BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27792337)

  • 1. Simulating Surface-Enhanced Hyper-Raman Scattering Using Atomistic Electrodynamics-Quantum Mechanical Models.
    Hu Z; Chulhai DV; Jensen L
    J Chem Theory Comput; 2016 Dec; 12(12):5968-5978. PubMed ID: 27792337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating surface-enhanced Raman optical activity using atomistic electrodynamics-quantum mechanical models.
    Chulhai DV; Jensen L
    J Phys Chem A; 2014 Oct; 118(39):9069-79. PubMed ID: 24834959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy.
    Payton JL; Morton SM; Moore JE; Jensen L
    J Chem Phys; 2012 Jun; 136(21):214103. PubMed ID: 22697526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie theory) methods for calculating surface enhanced Raman and hyper-Raman spectra.
    Mullin J; Valley N; Blaber MG; Schatz GC
    J Phys Chem A; 2012 Sep; 116(38):9574-81. PubMed ID: 22946645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy in solution.
    Becca JC; Chen X; Jensen L
    J Chem Phys; 2021 Jun; 154(22):224705. PubMed ID: 34241237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface enhanced hyper Raman scattering (SEHRS) and its applications.
    Madzharova F; Heiner Z; Kneipp J
    Chem Soc Rev; 2017 Jul; 46(13):3980-3999. PubMed ID: 28530726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilizing Molecular Hyperpolarizability for Trace Analysis: A Surface-Enhanced Hyper-Raman Scattering Study of Uranyl Ion.
    Trujillo MJ; Camden JP
    ACS Omega; 2018 Jun; 3(6):6660-6664. PubMed ID: 31458840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Discrete Interaction Model/Quantum Mechanical Method for Simulating Plasmon-Enhanced Two-Photon Absorption.
    Hu Z; Jensen L
    J Chem Theory Comput; 2018 Nov; 14(11):5896-5903. PubMed ID: 30351932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-Enhanced Raman and Surface-Enhanced Hyper-Raman Scattering of Thiol-Functionalized Carotene.
    Gühlke M; Heiner Z; Kneipp J
    J Phys Chem C Nanomater Interfaces; 2016 Sep; 120(37):20702-20709. PubMed ID: 28077983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures.
    Gühlke M; Heiner Z; Kneipp J
    Phys Chem Chem Phys; 2015 Oct; 17(39):26093-100. PubMed ID: 26377486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil.
    Madzharova F; Heiner Z; Gühlke M; Kneipp J
    J Phys Chem C Nanomater Interfaces; 2016 Jul; 120(28):15415-15423. PubMed ID: 28077982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced hyper-Raman scattering (SEHRS) on Ag film over Nanosphere (FON) electrodes: surface symmetry of centrosymmetric adsorbates.
    Hulteen JC; Young MA; Van Duyne RP
    Langmuir; 2006 Dec; 22(25):10354-64. PubMed ID: 17129003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-Enhanced Hyper Raman Spectra of Aromatic Thiols on Gold and Silver Nanoparticles.
    Madzharova F; Heiner Z; Kneipp J
    J Phys Chem C Nanomater Interfaces; 2020 Mar; 124(11):6233-6241. PubMed ID: 32395194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A discrete interaction model/quantum mechanical method to describe the interaction of metal nanoparticles and molecular absorption.
    Morton SM; Jensen L
    J Chem Phys; 2011 Oct; 135(13):134103. PubMed ID: 21992278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced hyper-Raman scattering of Rhodamine 6G isotopologues: Assignment of lower vibrational frequencies.
    Olson JE; Hu Z; Best MD; Jensen L; Camden JP
    J Chem Phys; 2021 Jan; 154(3):034703. PubMed ID: 33499640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced hyper Raman hyperspectral imaging and probing in animal cells.
    Heiner Z; Gühlke M; Živanović V; Madzharova F; Kneipp J
    Nanoscale; 2017 Jun; 9(23):8024-8032. PubMed ID: 28574069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.
    Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M
    J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the near-field effect on molecular excited states using the discrete interaction model/quantum mechanical method.
    Ye H; Becca JC; Jensen L
    J Chem Phys; 2024 Jan; 160(1):. PubMed ID: 38174789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential Application of h-BNC Structures in SERS and SEHRS Spectroscopies: A Theoretical Perspective.
    Gil-Guerrero S; Otero N; Queizán M; Mandado Alonso M
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.