These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 27792414)
1. Toward Optimal Cryopreservation and Storage for Achievement of High Cell Recovery and Maintenance of Cell Viability and T Cell Functionality. Angel S; von Briesen H; Oh YJ; Baller MK; Zimmermann H; Germann A Biopreserv Biobank; 2016 Dec; 14(6):539-547. PubMed ID: 27792414 [TBL] [Abstract][Full Text] [Related]
2. Temperature fluctuations during deep temperature cryopreservation reduce PBMC recovery, viability and T-cell function. Germann A; Oh YJ; Schmidt T; Schön U; Zimmermann H; von Briesen H Cryobiology; 2013 Oct; 67(2):193-200. PubMed ID: 23850825 [TBL] [Abstract][Full Text] [Related]
3. Towards a xeno-free and fully chemically defined cryopreservation medium for maintaining viability, recovery, and antigen-specific functionality of PBMC during long-term storage. Schulz JC; Germann A; Kemp-Kamke B; Mazzotta A; von Briesen H; Zimmermann H J Immunol Methods; 2012 Aug; 382(1-2):24-31. PubMed ID: 22580762 [TBL] [Abstract][Full Text] [Related]
4. Shipping blood to a central laboratory in multicenter clinical trials: effect of ambient temperature on specimen temperature, and effects of temperature on mononuclear cell yield, viability and immunologic function. Olson WC; Smolkin ME; Farris EM; Fink RJ; Czarkowski AR; Fink JH; Chianese-Bullock KA; Slingluff CL J Transl Med; 2011 Mar; 9():26. PubMed ID: 21385453 [TBL] [Abstract][Full Text] [Related]
5. Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells. Pogozhykh D; Pogozhykh O; Prokopyuk V; Kuleshova L; Goltsev A; Blasczyk R; Mueller T Stem Cell Res Ther; 2017 Mar; 8(1):66. PubMed ID: 28284229 [TBL] [Abstract][Full Text] [Related]
6. Controlled-rate freezer cryopreservation of highly concentrated peripheral blood mononuclear cells results in higher cell yields and superior autologous T-cell stimulation for dendritic cell-based immunotherapy. Buhl T; Legler TJ; Rosenberger A; Schardt A; Schön MP; Haenssle HA Cancer Immunol Immunother; 2012 Nov; 61(11):2021-31. PubMed ID: 22527251 [TBL] [Abstract][Full Text] [Related]
7. Substantial improvements in performance indicators achieved in a peripheral blood mononuclear cell cryopreservation quality assurance program using single donor samples. Dyer WB; Pett SL; Sullivan JS; Emery S; Cooper DA; Kelleher AD; Lloyd A; Lewin SR Clin Vaccine Immunol; 2007 Jan; 14(1):52-9. PubMed ID: 17050740 [TBL] [Abstract][Full Text] [Related]
8. Defining blood processing parameters for optimal detection of cryopreserved antigen-specific responses for HIV vaccine trials. Bull M; Lee D; Stucky J; Chiu YL; Rubin A; Horton H; McElrath MJ J Immunol Methods; 2007 Apr; 322(1-2):57-69. PubMed ID: 17382342 [TBL] [Abstract][Full Text] [Related]
9. Effect of cryopreservation of peripheral blood mononuclear cells (PBMCs) on the variability of an antigen-specific memory B cell ELISpot. Trück J; Mitchell R; Thompson AJ; Morales-Aza B; Clutterbuck EA; Kelly DF; Finn A; Pollard AJ Hum Vaccin Immunother; 2014; 10(8):2490-6. PubMed ID: 25424961 [TBL] [Abstract][Full Text] [Related]
10. The effects of storage temperature on PBMC gene expression. Yang J; Diaz N; Adelsberger J; Zhou X; Stevens R; Rupert A; Metcalf JA; Baseler M; Barbon C; Imamichi T; Lempicki R; Cosentino LM BMC Immunol; 2016 Mar; 17():6. PubMed ID: 26979060 [TBL] [Abstract][Full Text] [Related]
11. Effect of storage conditions on subpopulations of peripheral blood T lymphocytes isolated from naïve cattle and cattle infected with foot-and-mouth disease virus. Eschbaumer M; Stenfeldt C; Pacheco JM; Rekant SI; Arzt J Vet Clin Pathol; 2016 Mar; 45(1):110-5. PubMed ID: 26802284 [TBL] [Abstract][Full Text] [Related]
12. Functional comparison of PBMCs isolated by Cell Preparation Tubes (CPT) vs. Lymphoprep Tubes. Chen H; Schürch CM; Noble K; Kim K; Krutzik PO; O'Donnell E; Vander Tuig J; Nolan GP; McIlwain DR BMC Immunol; 2020 Mar; 21(1):15. PubMed ID: 32228458 [TBL] [Abstract][Full Text] [Related]
13. Influence of platelet lysate on the recovery and metabolic performance of cryopreserved human hepatocytes upon thawing. Tolosa L; Bonora-Centelles A; Donato MT; Mirabet V; Pareja E; Negro A; López S; Castell JV; Gómez-Lechón MJ Transplantation; 2011 Jun; 91(12):1340-6. PubMed ID: 21516066 [TBL] [Abstract][Full Text] [Related]
14. The Center for HIV/AIDS Vaccine Immunology (CHAVI) multi-site quality assurance program for cryopreserved human peripheral blood mononuclear cells. Sarzotti-Kelsoe M; Needham LK; Rountree W; Bainbridge J; Gray CM; Fiscus SA; Ferrari G; Stevens WS; Stager SL; Binz W; Louzao R; Long KO; Mokgotho P; Moodley N; Mackay M; Kerkau M; McMillion T; Kirchherr J; Soderberg KA; Haynes BF; Denny TN J Immunol Methods; 2014 Jul; 409():21-30. PubMed ID: 24910414 [TBL] [Abstract][Full Text] [Related]
15. T cell responses in fresh and cryopreserved peripheral blood mononuclear cells: kinetics of cell viability, cellular subsets, proliferation, and cytokine production. Jeurink PV; Vissers YM; Rappard B; Savelkoul HF Cryobiology; 2008 Oct; 57(2):91-103. PubMed ID: 18593572 [TBL] [Abstract][Full Text] [Related]
16. Effects of cryopreservation on immune responses: VI. An inexpensive method for freezing human peripheral blood mononuclear cells. Venkataraman M J Clin Lab Immunol; 1992; 37(3):133-43. PubMed ID: 1340509 [TBL] [Abstract][Full Text] [Related]