These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 27792725)

  • 1. MD/DPD Multiscale Framework for Predicting Morphology and Stresses of Red Blood Cells in Health and Disease.
    Chang HY; Li X; Li H; Karniadakis GE
    PLoS Comput Biol; 2016 Oct; 12(10):e1005173. PubMed ID: 27792725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Biomechanics of Human Red Blood Cells in Hematological Disorders.
    Li X; Li H; Chang HY; Lykotrafitis G; Em Karniadakis G
    J Biomech Eng; 2017 Feb; 139(2):0210081-02100813. PubMed ID: 27814430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite.
    Zhang Y; Huang C; Kim S; Golkaram M; Dixon MW; Tilley L; Li J; Zhang S; Suresh S
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6068-73. PubMed ID: 25918423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus.
    Chang HY; Li X; Karniadakis GE
    Biophys J; 2017 Jul; 113(2):481-490. PubMed ID: 28746858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid bilayer and cytoskeletal interactions in a red blood cell.
    Peng Z; Li X; Pivkin IV; Dao M; Karniadakis GE; Suresh S
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13356-61. PubMed ID: 23898181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.
    Pan W; Fedosov DA; Caswell B; Karniadakis GE
    Microvasc Res; 2011 Sep; 82(2):163-70. PubMed ID: 21640731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale modeling of red blood cell mechanics and blood flow in malaria.
    Fedosov DA; Lei H; Caswell B; Suresh S; Karniadakis GE
    PLoS Comput Biol; 2011 Dec; 7(12):e1002270. PubMed ID: 22144878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of surface-area-to-volume ratio, internal viscosity and membrane viscoelasticity on red blood cell deformability measured in isotonic condition.
    Renoux C; Faivre M; Bessaa A; Da Costa L; Joly P; Gauthier A; Connes P
    Sci Rep; 2019 May; 9(1):6771. PubMed ID: 31043643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wall shear stress-based model for adhesive dynamics of red blood cells in malaria.
    Fedosov DA; Caswell B; Karniadakis GE
    Biophys J; 2011 May; 100(9):2084-93. PubMed ID: 21539775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics of diseased red blood cells in human spleen and consequences for hereditary blood disorders.
    Li H; Lu L; Li X; Buffet PA; Dao M; Karniadakis GE; Suresh S
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9574-9579. PubMed ID: 30190436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic fatigue measurement of human erythrocytes using dielectrophoresis.
    Qiang Y; Liu J; Du E
    Acta Biomater; 2017 Jul; 57():352-362. PubMed ID: 28526627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network.
    Li H; Lykotrafitis G
    Biophys J; 2014 Aug; 107(3):642-653. PubMed ID: 25099803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic response of red blood cells in health and disease.
    Hareendranath S; Sathian SP
    Soft Matter; 2023 Feb; 19(6):1219-1230. PubMed ID: 36688330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Simulations of the Motion and Deformation of Three RBCs during Poiseuille Flow through a Constricted Vessel Using IB-LBM.
    Wang R; Wei Y; Wu C; Sun L; Zheng W
    Comput Math Methods Med; 2018; 2018():9425375. PubMed ID: 29681999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational analysis of dynamic interaction of two red blood cells in a capillary.
    Li H; Ye T; Lam KY
    Cell Biochem Biophys; 2014 Jul; 69(3):673-80. PubMed ID: 24590262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained red blood cell model with accurate mechanical properties, rheology and dynamics.
    Fedosov DA; Caswell B; Karniadakis GE
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4266-9. PubMed ID: 19965026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems.
    Quinn DJ; Pivkin I; Wong SY; Chiam KH; Dao M; Karniadakis GE; Suresh S
    Ann Biomed Eng; 2011 Mar; 39(3):1041-50. PubMed ID: 21240637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.