These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27792959)

  • 21. Influence of fertilizers applied to a paddy-upland rotation on characteristics of soil organic carbon and humic acids.
    Chang Chien SW; Wang MC; Hsu JH; Seshaiah K
    J Agric Food Chem; 2006 Sep; 54(18):6790-9. PubMed ID: 16939341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon sequestration in paddy soils: Contribution and mechanisms of mineral-associated SOC formation.
    Niu C; Weng L; Lian W; Zhang R; Ma J; Chen Y
    Chemosphere; 2023 Aug; 333():138927. PubMed ID: 37187382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of trinitrotoluene in contaminated soils as affected by its initial concentrations and its binding to soil organic matter fractions.
    Singh N; Hennecke D; Hoerner J; Koerdel W; Schaeffer A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Mar; 43(4):348-56. PubMed ID: 18273739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescence analysis of humic and fulvic acids from two Brazilian oxisols as affected by biosolid amendment.
    Bertoncini EI; D'Orazio V; Senesi N; Mattiazzo ME
    Anal Bioanal Chem; 2005 Mar; 381(6):1281-8. PubMed ID: 15744515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of humic substances and iron and aluminum ions on the sorption of acetamiprid to an arable soil.
    Murano H; Suzuki K; Kayada S; Saito M; Yuge N; Arishiro T; Watanabe A; Isoi T
    Sci Total Environ; 2018 Feb; 615():1478-1484. PubMed ID: 29055598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation.
    Yang F; Zhang S; Cheng K; Antonietti M
    Sci Total Environ; 2019 Oct; 686():1140-1151. PubMed ID: 31412510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compost effect on soil humic acid: A NMR study.
    Adani F; Genevini P; Tambone F; Montoneri E
    Chemosphere; 2006 Nov; 65(8):1414-8. PubMed ID: 16698065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Humic fractions of forest, pasture and maize crop soils resulting from microbial activity.
    Tavares RL; Nahas E
    Braz J Microbiol; 2014; 45(3):963-9. PubMed ID: 25477932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Distribution characteristics of soil humus fractions stable carbon isotope natural abundance (delta 13C) in paddy field under long-term ridge culture].
    Tang XH; Luo YJ; Ren ZJ; Lü JK; Wei CF
    Ying Yong Sheng Tai Xue Bao; 2011 Apr; 22(4):985-91. PubMed ID: 21774322
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of heating on composition, degree of darkness, and stacking nanostructure of soil humic acids.
    Katsumi N; Yonebayashi K; Okazaki M
    Sci Total Environ; 2016 Jan; 541():23-32. PubMed ID: 26398447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Responses of soil organic carbon content and fractions to land-use conversion from paddy field to upland].
    Huang S; Rui WY; Peng XX; Liu WR; Zhang WJ
    Huan Jing Ke Xue; 2009 Apr; 30(4):1146-51. PubMed ID: 19545021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fractionation and characterization of humic acids from organic amended rice paddy soils.
    Pramanik P; Kim PJ
    Sci Total Environ; 2014 Jan; 466-467():952-6. PubMed ID: 23978588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effects of different managements on soil humic acid structural features in chestnut soil on typical Leymus chinensis steppe, Inner Mongolia, China].
    Li GJ; Lü YZ; Li BG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1508-11. PubMed ID: 19810519
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Features of the chemical structure of different organic matter pools in Haplic Chernozem of the Streletskaya steppe:
    Danchenko NN; Artemyeva ZS; Kolyagin YG; Kogut BM
    Environ Res; 2020 Dec; 191():110205. PubMed ID: 32949616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analysis of partial structures of a peat humic and fulvic acid using one- and two-dimensional nuclear magnetic resonance spectroscopy.
    Hertkorn N; Permin A; Perminova I; Kovalevskii D; Yudov M; Petrosyan V; Kettrup A
    J Environ Qual; 2002; 31(2):375-87. PubMed ID: 11931424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative and mid-infrared changes of humic substances from burned soils.
    Vergnoux A; Guiliano M; Di Rocco R; Domeizel M; Théraulaz F; Doumenq P
    Environ Res; 2011 Feb; 111(2):205-14. PubMed ID: 20362980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular composition of raw peat and humic substances from permafrost peat soils of European Northeast Russia as climate change markers.
    Vasilevich R; Lodygin E; Beznosikov V; Abakumov E
    Sci Total Environ; 2018 Feb; 615():1229-1238. PubMed ID: 29751428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coupling metabolisms of arsenic and iron with humic substances through microorganisms in paddy soil.
    Yi XY; Yang YP; Yuan HY; Chen Z; Duan GL; Zhu YG
    J Hazard Mater; 2019 Jul; 373():591-599. PubMed ID: 30952004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of transformations of maize residues into soil organic matter.
    Song G; Novotny EH; Mao JD; Hayes MHB
    Sci Total Environ; 2017 Feb; 579():1843-1854. PubMed ID: 27939195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectroscopic and molecular characterization of humic substances (HS) from soils and sediments in a watershed: comparative study of HS chemical fractions and the origins.
    Derrien M; Lee YK; Park JE; Li P; Chen M; Lee SH; Lee SH; Lee JB; Hur J
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16933-16945. PubMed ID: 28577143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.