These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 27793)

  • 1. Cytoplasmic transfer of a determinant for chloramphenicol resistance between mammalian cell lines.
    Munro E; Siegel RL; Craig IW; Sly WS
    Proc R Soc Lond B Biol Sci; 1978 Apr; 201(1142):73-85. PubMed ID: 27793
    [No Abstract]   [Full Text] [Related]  

  • 2. Cytoplasmic transfer of chloramphenicol resistance in a human cell line.
    Mitchell CH; Attardi G
    Somatic Cell Genet; 1978 Nov; 4(6):737-44. PubMed ID: 741354
    [No Abstract]   [Full Text] [Related]  

  • 3. Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells.
    Wallace DC; Bunn CL; Eisenstadt JM
    J Cell Biol; 1975 Oct; 67(1):174-88. PubMed ID: 1176530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitotic segregation of cytoplasmic determinants for chloramphenicol resistance in mammalian cells II: Fusions with human cell lines.
    Wallace DC; Bunn CL; Eisenstadt JM
    Somatic Cell Genet; 1977 Jan; 3(1):93-119. PubMed ID: 601678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and detailed characterization of human cell lines resistant to D-threo-chloramphenicol.
    Siegel RL; Jeffreys AJ; Sly W; Craig IW
    Exp Cell Res; 1976 Oct; 102(2):298-310. PubMed ID: 789101
    [No Abstract]   [Full Text] [Related]  

  • 6. Transformation of cultured cells to chloramphenicol resistance by purified mammalian mitochondrial DNA.
    Coon HG; Ho C
    Brookhaven Symp Biol; 1977 May 12-20; (29):166-77. PubMed ID: 754863
    [No Abstract]   [Full Text] [Related]  

  • 7. Transfer of murine intracisternal A particle phenotype in chloramphenicol-resistant cytoplasts.
    Malech HL; Wivel NA
    Cell; 1976 Nov; 9(3):383-91. PubMed ID: 991270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitotic segregation of cytoplasmic determinants for chloramphenicol resistance in mammalian cells. I: Fusion with mouse cell lines.
    Bunn CL; Wallace DC; Eisenstadt JM
    Somatic Cell Genet; 1977 Jan; 3(1):71-92. PubMed ID: 564084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of chloramphenicol on the ultrastructure of mitochondria in sensitive and resistant strains of HeLa.
    Kislev N; Spolsky CM; Eisenstadt JM
    J Cell Biol; 1973 May; 57(2):571-9. PubMed ID: 4696551
    [No Abstract]   [Full Text] [Related]  

  • 10. Use of isolated mitochondria to transfer chloramphenicol resistance in hamster cells.
    Ber R; Stauver MG; Shay JW
    Isr J Med Sci; 1984 Mar; 20(3):244-8. PubMed ID: 6724871
    [No Abstract]   [Full Text] [Related]  

  • 11. Phenotypic trait transferred by cybridization.
    Ber R; Wiener F
    Cytogenet Cell Genet; 1978; 21(5):304-8. PubMed ID: 354874
    [No Abstract]   [Full Text] [Related]  

  • 12. Studies of heterogeneous mitochondrial populations in a mouse cell line: the effects of selection for or against mitochondrial genomes that confer chloramphenicol resistance.
    Kearsey SE; Munro E; Craig IW
    Proc R Soc Lond B Biol Sci; 1985 May; 224(1236):315-23. PubMed ID: 2862632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial transformation of mammalian cells.
    Clark MA; Shay JW
    Nature; 1982 Feb; 295(5850):605-7. PubMed ID: 7057918
    [No Abstract]   [Full Text] [Related]  

  • 14. The effect of hexose on chloramphenicol sensitivity and resistance in Chinese hamster cells.
    Ziegler ML; Davidson RL
    J Cell Physiol; 1979 Mar; 98(3):627-35. PubMed ID: 438306
    [No Abstract]   [Full Text] [Related]  

  • 15. N-acetylhexosamine-induced alteration in biological behavior of cultured mammalian cells.
    Baba T; Aoki K; Kaku M; Kimura N
    Gan; 1971 Oct; 62(5):423-5. PubMed ID: 4946561
    [No Abstract]   [Full Text] [Related]  

  • 16. Homolytic constants in the correlation of chloramphenicol structure with activity.
    Hansch C; Kutter E; Leo A
    J Med Chem; 1969 Sep; 12(5):746-9. PubMed ID: 5812179
    [No Abstract]   [Full Text] [Related]  

  • 17. [New Djungarian hamster cell lines with selective cytoplasmic and nuclear genetic markers].
    Kopnin BP; Lukas JJ
    Genetika; 1982; 18(8):1320-5. PubMed ID: 6957361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of chloramphenicol on production of active bodies by rat and calf thyroid in vitro.
    Giedroyć-Niewiadomska D
    Mater Med Pol; 1973; 5(1):23-7. PubMed ID: 4774844
    [No Abstract]   [Full Text] [Related]  

  • 19. [Studies on the drug resistance of enteric bacteria. 12. Experimental isolation of the transmissible chloramphenicol-resistant factor].
    HARADA K; KAMEDA M; SUZUKI M; HASHIMOTO H; EGAWA R; MITSUHASHI S
    Nihon Saikingaku Zasshi; 1961 Oct; 16():894-7. PubMed ID: 13904519
    [No Abstract]   [Full Text] [Related]  

  • 20. Translocation of the chloramphenicol-resistance determinant in Staphylococcus aureus.
    Młynarczyk A; Młynarczyk G; Sawicka-Grzelak A; Osowiecki H
    Acta Microbiol Pol; 1986; 35(1-2):49-56. PubMed ID: 2426925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.