BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 27793013)

  • 1. Mammary gland stem cells and their application in breast cancer.
    Yang X; Wang H; Jiao B
    Oncotarget; 2017 Feb; 8(6):10675-10691. PubMed ID: 27793013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lgr6 labels a rare population of mammary gland progenitor cells that are able to originate luminal mammary tumours.
    Blaas L; Pucci F; Messal HA; Andersson AB; Josue Ruiz E; Gerling M; Douagi I; Spencer-Dene B; Musch A; Mitter R; Bhaw L; Stone R; Bornhorst D; Sesay AK; Jonkers J; Stamp G; Malanchi I; Toftgård R; Behrens A
    Nat Cell Biol; 2016 Dec; 18(12):1346-1356. PubMed ID: 27798604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammary stem cells and breast cancer.
    Molyneux G; Regan J; Smalley MJ
    Cell Mol Life Sci; 2007 Dec; 64(24):3248-60. PubMed ID: 17955177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the mammary gland one cell at a time.
    Cristea S; Polyak K
    Nat Commun; 2018 Jun; 9(1):2473. PubMed ID: 29946144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.
    Prat A; Karginova O; Parker JS; Fan C; He X; Bixby L; Harrell JC; Roman E; Adamo B; Troester M; Perou CM
    Breast Cancer Res Treat; 2013 Nov; 142(2):237-55. PubMed ID: 24162158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular basis of mammary gland development and epithelial differentiation.
    Slepicka PF; Somasundara AVH; Dos Santos CO
    Semin Cell Dev Biol; 2021 Jun; 114():93-112. PubMed ID: 33082117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-terminally phosphorylated p27 activates self-renewal driver genes to program cancer stem cell expansion, mammary hyperplasia and cancer.
    Razavipour SF; Yoon H; Jang K; Kim M; Nawara HM; Bagheri A; Huang WC; Shin M; Zhao D; Zhou Z; Van Boven D; Briegel K; Morey L; Ince TA; Johnson M; Slingerland JM
    Nat Commun; 2024 Jun; 15(1):5152. PubMed ID: 38886396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic and Transcriptomic Profiling of Mammary Gland Development and Tumor Models Disclose Regulators of Cell State Plasticity.
    Dravis C; Chung CY; Lytle NK; Herrera-Valdez J; Luna G; Trejo CL; Reya T; Wahl GM
    Cancer Cell; 2018 Sep; 34(3):466-482.e6. PubMed ID: 30174241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammary lineage tracing: the coming of age.
    Sale S; Pavelic K
    Cell Mol Life Sci; 2015 Apr; 72(8):1577-83. PubMed ID: 25563489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Niche inflammatory signals control oscillating mammary regeneration and protect stem cells from cytotoxic stress.
    Liu C; Xu Y; Yang G; Tao Y; Chang J; Wang S; Cheung TH; Chen J; Zeng YA
    Cell Stem Cell; 2024 Jan; 31(1):89-105.e6. PubMed ID: 38141612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of stem cell activity in the mouse mammary gland.
    Bruno RD; Smith GH
    Stem Cell Rev Rep; 2011 Jun; 7(2):238-47. PubMed ID: 20853073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Twelfth Annual ENBDC Workshop: Methods in Mammary Gland Biology and Breast Cancer.
    Charifou E; Traustadottir GA; Bentires-Alj M; Howard B; Van Keymeulen A
    J Mammary Gland Biol Neoplasia; 2021 Sep; 26(3):221-226. PubMed ID: 34448098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reprogramming cell fates in the mammary microenvironment.
    Boulanger CA; Smith GH
    Cell Cycle; 2009 Apr; 8(8):1127-32. PubMed ID: 19282662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embryonic Barcoding of Equipotent Mammary Progenitors Functionally Identifies Breast Cancer Drivers.
    Ying Z; Beronja S
    Cell Stem Cell; 2020 Mar; 26(3):403-419.e4. PubMed ID: 32059806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining and targeting macrophage heterogeneity in the mammary gland and breast cancer.
    Elfstrum AK; Bapat AS; Schwertfeger KL
    Cancer Med; 2024 Feb; 13(3):e7053. PubMed ID: 38426622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-matrix interactions in mammary gland development and breast cancer.
    Muschler J; Streuli CH
    Cold Spring Harb Perspect Biol; 2010 Oct; 2(10):a003202. PubMed ID: 20702598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell Chromatin Analysis of Mammary Gland Development Reveals Cell-State Transcriptional Regulators and Lineage Relationships.
    Chung CY; Ma Z; Dravis C; Preissl S; Poirion O; Luna G; Hou X; Giraddi RR; Ren B; Wahl GM
    Cell Rep; 2019 Oct; 29(2):495-510.e6. PubMed ID: 31597106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual role of pregnancy in breast cancer risk.
    Fu S; Ke H; Yuan H; Xu H; Chen W; Zhao L
    Gen Comp Endocrinol; 2024 Jun; 352():114501. PubMed ID: 38527592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer stem cell-immune cell crosstalk in breast tumor microenvironment: a determinant of therapeutic facet.
    Guha A; Goswami KK; Sultana J; Ganguly N; Choudhury PR; Chakravarti M; Bhuniya A; Sarkar A; Bera S; Dhar S; Das J; Das T; Baral R; Bose A; Banerjee S
    Front Immunol; 2023; 14():1245421. PubMed ID: 38090567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer.
    Nelson CM; Bissell MJ
    Annu Rev Cell Dev Biol; 2006; 22():287-309. PubMed ID: 16824016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.