These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 27793288)

  • 21. Exploring protein structure and dynamics under denaturing conditions by single-molecule FRET analysis.
    Nienhaus GU
    Macromol Biosci; 2006 Nov; 6(11):907-22. PubMed ID: 17099864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Significant Heterogeneity and Slow Dynamics of the Unfolded Ubiquitin Detected by the Line Confocal Method of Single-Molecule Fluorescence Spectroscopy.
    Saito M; Kamonprasertsuk S; Suzuki S; Nanatani K; Oikawa H; Kushiro K; Takai M; Chen PT; Chen EH; Chen RP; Takahashi S
    J Phys Chem B; 2016 Sep; 120(34):8818-29. PubMed ID: 27472305
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analyzing Single Molecule FRET Trajectories Using HMM.
    Okamoto K
    Methods Mol Biol; 2017; 1552():103-113. PubMed ID: 28224493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances in single-molecule fluorescence microscopy render structural biology dynamic.
    Bacic L; Sabantsev A; Deindl S
    Curr Opin Struct Biol; 2020 Dec; 65():61-68. PubMed ID: 32634693
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of fluorescence resonance energy transfer experiments: effect of the dyes on protein folding.
    Allen LR; Paci E
    J Phys Condens Matter; 2010 Jun; 22(23):235103. PubMed ID: 21393762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ensemble and single-molecule detected time-resolved FRET methods in studies of protein conformations and dynamics.
    Orevi T; Lerner E; Rahamim G; Amir D; Haas E
    Methods Mol Biol; 2014; 1076():113-69. PubMed ID: 24108626
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gradual disordering of the native state on a slow two-state folding protein monitored by single-molecule fluorescence spectroscopy and NMR.
    Campos LA; Sadqi M; Liu J; Wang X; English DS; Muñoz V
    J Phys Chem B; 2013 Oct; 117(42):13120-31. PubMed ID: 23796244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rise-time of FRET-acceptor fluorescence tracks protein folding.
    Lindhoud S; Westphal AH; van Mierlo CP; Visser AJ; Borst JW
    Int J Mol Sci; 2014 Dec; 15(12):23836-50. PubMed ID: 25535076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-molecule fluorescence studies of protein folding.
    Nienhaus GU
    Methods Mol Biol; 2009; 490():311-37. PubMed ID: 19157089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-Molecule Kinetic Studies of Nucleic Acids by Förster Resonance Energy Transfer.
    Hadzic MCAS; Sigel RKO; Börner R
    Methods Mol Biol; 2022; 2439():173-190. PubMed ID: 35226322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Power of Force: Insights into the Protein Folding Process Using Single-Molecule Force Spectroscopy.
    Schönfelder J; De Sancho D; Perez-Jimenez R
    J Mol Biol; 2016 Oct; 428(21):4245-4257. PubMed ID: 27639437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using sm-FRET and denaturants to reveal folding landscapes.
    Shaw E; St-Pierre P; McCluskey K; Lafontaine DA; Penedo JC
    Methods Enzymol; 2014; 549():313-41. PubMed ID: 25432755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studying Structural Dynamics of Potassium Channels by Single-Molecule FRET.
    Wang S; Brettmann JB; Nichols CG
    Methods Mol Biol; 2018; 1684():163-180. PubMed ID: 29058191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Imaging protein-protein interactions by Fluorescence Resonance Energy Transfer (FRET) microscopy.
    Wouters FS; Bastiaens PI
    Curr Protoc Neurosci; 2006 Feb; Chapter 5():Unit 5.22. PubMed ID: 18428638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence microscopy for visualizing single-molecule protein dynamics.
    Yokota H
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129362. PubMed ID: 31078674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microsecond Conformational Dynamics of Biopolymers Revealed by Dynamic-Quenching Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy with Single Dye Labeling.
    Sarkar B; Ishii K; Tahara T
    J Phys Chem Lett; 2019 Sep; 10(18):5536-5541. PubMed ID: 31393133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Labeling of Proteins for Single-Molecule Fluorescence Spectroscopy.
    Zosel F; Holla A; Schuler B
    Methods Mol Biol; 2022; 2376():207-233. PubMed ID: 34845612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detecting molecular interactions in live-cell single-molecule imaging with proximity-assisted photoactivation (PAPA).
    Graham TGW; Ferrie JJ; Dailey GM; Tjian R; Darzacq X
    Elife; 2022 Aug; 11():. PubMed ID: 35976226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-Molecule FRET Spectroscopy and the Polymer Physics of Unfolded and Intrinsically Disordered Proteins.
    Schuler B; Soranno A; Hofmann H; Nettels D
    Annu Rev Biophys; 2016 Jul; 45():207-31. PubMed ID: 27145874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Techniques for detecting protein-protein interactions in living cells: principles, limitations, and recent progress.
    Cui Y; Zhang X; Yu M; Zhu Y; Xing J; Lin J
    Sci China Life Sci; 2019 May; 62(5):619-632. PubMed ID: 30877434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.