These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 27793288)

  • 41. Measuring protein conformational changes by FRET/LRET.
    Heyduk T
    Curr Opin Biotechnol; 2002 Aug; 13(4):292-6. PubMed ID: 12323348
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Single-molecule fluorescence studies of intrinsically disordered proteins.
    Ferreon AC; Moran CR; Gambin Y; Deniz AA
    Methods Enzymol; 2010; 472():179-204. PubMed ID: 20580965
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Defining the limits of single-molecule FRET resolution in TIRF microscopy.
    Holden SJ; Uphoff S; Hohlbein J; Yadin D; Le Reste L; Britton OJ; Kapanidis AN
    Biophys J; 2010 Nov; 99(9):3102-11. PubMed ID: 21044609
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Studies of protein folding and dynamics using single molecule fluorescence spectroscopy.
    Basak S; Chattopadhyay K
    Phys Chem Chem Phys; 2014 Jun; 16(23):11139-49. PubMed ID: 24805942
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single-Molecule Fluorescence Studies of Membrane Transporters Using Total Internal Reflection Microscopy.
    Goudsmits JMH; van Oijen AM; Slotboom DJ
    Methods Enzymol; 2017; 594():101-121. PubMed ID: 28779837
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mapping the Conformational Landscape of Glutamate Receptors Using Single Molecule FRET.
    MacLean DM; Durham RJ; Jayaraman V
    Trends Neurosci; 2019 Feb; 42(2):128-139. PubMed ID: 30385052
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-Molecule FRET Methods to Study Glutamate Receptors.
    Litwin DB; Durham RJ; Jayaraman V
    Methods Mol Biol; 2019; 1941():3-16. PubMed ID: 30707423
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiply labeling proteins for studies of folding and stability.
    Haney CM; Wissner RF; Petersson EJ
    Curr Opin Chem Biol; 2015 Oct; 28():123-30. PubMed ID: 26253346
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single-Molecule FRET-Based Multiplexed Detection.
    Sethi S; Wijesinghe KM; Dhakal S
    Methods Mol Biol; 2024; 2744():183-195. PubMed ID: 38683319
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Using Multiorder Time-Correlation Functions (TCFs) To Elucidate Biomolecular Reaction Pathways from Microsecond Single-Molecule Fluorescence Experiments.
    Phelps C; Israels B; Marsh MC; von Hippel PH; Marcus AH
    J Phys Chem B; 2016 Dec; 120(51):13003-13016. PubMed ID: 27992233
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evidence of an intermediate and parallel pathways in protein unfolding from single-molecule fluorescence.
    Orte A; Craggs TD; White SS; Jackson SE; Klenerman D
    J Am Chem Soc; 2008 Jun; 130(25):7898-907. PubMed ID: 18507381
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of confocal single-molecule FRET to intrinsically disordered proteins.
    Schuler B; Müller-Späth S; Soranno A; Nettels D
    Methods Mol Biol; 2012; 896():21-45. PubMed ID: 22821515
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recovering true FRET efficiencies from smFRET investigations requires triplet state mitigation.
    Pati AK; Kilic Z; Martin MI; Terry DS; Borgia A; Bar S; Jockusch S; Kiselev R; Altman RB; Blanchard SC
    Nat Methods; 2024 Jul; 21(7):1222-1230. PubMed ID: 38877317
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved temporal resolution and linked hidden Markov modeling for switchable single-molecule FRET.
    Uphoff S; Gryte K; Evans G; Kapanidis AN
    Chemphyschem; 2011 Feb; 12(3):571-9. PubMed ID: 21280168
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modeling of Multicolor Single-Molecule Förster Resonance Energy-Transfer Experiments on Protein Folding.
    Andryushchenko VA; Chekmarev SF
    J Phys Chem B; 2018 Nov; 122(47):10678-10685. PubMed ID: 30383961
    [TBL] [Abstract][Full Text] [Related]  

  • 56. FRET-enhanced photostability allows improved single-molecule tracking of proteins and protein complexes in live mammalian cells.
    Basu S; Needham LM; Lando D; Taylor EJR; Wohlfahrt KJ; Shah D; Boucher W; Tan YL; Bates LE; Tkachenko O; Cramard J; Lagerholm BC; Eggeling C; Hendrich B; Klenerman D; Lee SF; Laue ED
    Nat Commun; 2018 Jun; 9(1):2520. PubMed ID: 29955052
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ABEL-FRET: tether-free single-molecule FRET with hydrodynamic profiling.
    Wilson H; Wang Q
    Nat Methods; 2021 Jul; 18(7):816-820. PubMed ID: 34127856
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Accurate Determination of Human CPR Conformational Equilibrium by smFRET Using Dual Orthogonal Noncanonical Amino Acid Labeling.
    Quast RB; Fatemi F; Kranendonk M; Margeat E; Truan G
    Chembiochem; 2019 Mar; 20(5):659-666. PubMed ID: 30427570
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations.
    Merchant KA; Best RB; Louis JM; Gopich IV; Eaton WA
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1528-33. PubMed ID: 17251351
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetics coming into focus: single-molecule microscopy of riboswitch dynamics.
    Ray S; Chauvier A; Walter NG
    RNA Biol; 2019 Sep; 16(9):1077-1085. PubMed ID: 30328748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.