These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Improving the prediction of chemotherapeutic sensitivity of tumors in breast cancer via optimizing the selection of candidate genes. Jiang L; Huang L; Kuang Q; Zhang J; Li M; Wen Z; He L Comput Biol Chem; 2014 Apr; 49():71-8. PubMed ID: 24440656 [TBL] [Abstract][Full Text] [Related]
5. Accurate cancer classification using expressions of very few genes. Wang L; Chu F; Xie W IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(1):40-53. PubMed ID: 17277412 [TBL] [Abstract][Full Text] [Related]
6. Improving gene set analysis of microarray data by SAM-GS. Dinu I; Potter JD; Mueller T; Liu Q; Adewale AJ; Jhangri GS; Einecke G; Famulski KS; Halloran P; Yasui Y BMC Bioinformatics; 2007 Jul; 8():242. PubMed ID: 17612399 [TBL] [Abstract][Full Text] [Related]
7. Ranking metrics in gene set enrichment analysis: do they matter? Zyla J; Marczyk M; Weiner J; Polanska J BMC Bioinformatics; 2017 May; 18(1):256. PubMed ID: 28499413 [TBL] [Abstract][Full Text] [Related]
12. Comparative evaluation of gene-set analysis methods. Liu Q; Dinu I; Adewale AJ; Potter JD; Yasui Y BMC Bioinformatics; 2007 Nov; 8():431. PubMed ID: 17988400 [TBL] [Abstract][Full Text] [Related]
13. Considerations when using the significance analysis of microarrays (SAM) algorithm. Larsson O; Wahlestedt C; Timmons JA BMC Bioinformatics; 2005 May; 6():129. PubMed ID: 15921534 [TBL] [Abstract][Full Text] [Related]
14. Mixture classification model based on clinical markers for breast cancer prognosis. Zeng T; Liu J Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686 [TBL] [Abstract][Full Text] [Related]
15. Asymmetric microarray data produces gene lists highly predictive of research literature on multiple cancer types. Dawany NB; Tozeren A BMC Bioinformatics; 2010 Sep; 11():483. PubMed ID: 20875095 [TBL] [Abstract][Full Text] [Related]
16. Multiclass cancer classification by support vector machines with class-wise optimized genes and probability estimates. Anand A; Suganthan PN J Theor Biol; 2009 Aug; 259(3):533-40. PubMed ID: 19406131 [TBL] [Abstract][Full Text] [Related]
17. Gene shaving using a sensitivity analysis of kernel based machine learning approach, with applications to cancer data. Alam MA; Shahjaman M; Rahman MF; Hossain F; Deng HW PLoS One; 2019; 14(5):e0217027. PubMed ID: 31120939 [TBL] [Abstract][Full Text] [Related]
18. Genomic data integration in chronic lymphocytic leukemia. Fernández-Martínez JL; deAndrés-Galiana EJ; Sonis ST J Gene Med; 2017 Jan; 19(1-2):. PubMed ID: 27928896 [TBL] [Abstract][Full Text] [Related]
19. Selection of differentially expressed genes in microarray data analysis. Chen JJ; Wang SJ; Tsai CA; Lin CJ Pharmacogenomics J; 2007 Jun; 7(3):212-20. PubMed ID: 16940966 [TBL] [Abstract][Full Text] [Related]
20. Investigating the concordance of Gene Ontology terms reveals the intra- and inter-platform reproducibility of enrichment analysis. Zhang L; Zhang J; Yang G; Wu D; Jiang L; Wen Z; Li M BMC Bioinformatics; 2013 Apr; 14():143. PubMed ID: 23627640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]