These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 27793833)

  • 1. DRH1, a p68-related RNA helicase gene, is required for chromosome breakage in Tetrahymena.
    McDaniel SL; Zweifel E; Harris PK; Yao MC; Cole ES; Chalker DL
    Biol Open; 2016 Dec; 5(12):1790-1798. PubMed ID: 27793833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetrahymena Pot2 is a developmentally regulated paralog of Pot1 that localizes to chromosome breakage sites but not to telomeres.
    Cranert S; Heyse S; Linger BR; Lescasse R; Price C
    Eukaryot Cell; 2014 Dec; 13(12):1519-29. PubMed ID: 25303953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmentally programmed excision of internal DNA sequences in Paramecium aurelia.
    Gratias A; Bétermier M
    Biochimie; 2001; 83(11-12):1009-22. PubMed ID: 11879729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LIA5 is required for nuclear reorganization and programmed DNA rearrangements occurring during tetrahymena macronuclear differentiation.
    Shieh AW; Chalker DL
    PLoS One; 2013; 8(9):e75337. PubMed ID: 24069402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nowa1p and Nowa2p: novel putative RNA binding proteins involved in trans-nuclear crosstalk in Paramecium tetraurelia.
    Nowacki M; Zagorski-Ostoja W; Meyer E
    Curr Biol; 2005 Sep; 15(18):1616-28. PubMed ID: 16169483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progeny of germ line knockouts of ASI2, a gene encoding a putative signal transduction receptor in Tetrahymena thermophila, fail to make the transition from sexual reproduction to vegetative growth.
    Li S; Yin L; Cole ES; Udani RA; Karrer KM
    Dev Biol; 2006 Jul; 295(2):633-46. PubMed ID: 16712831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide characterization of Tetrahymena thermophila chromosome breakage sites. II. Physical and genetic mapping.
    Cassidy-Hanley D; Bisharyan Y; Fridman V; Gerber J; Lin C; Orias E; Orias JD; Ryder H; Vong L; Hamilton EP
    Genetics; 2005 Aug; 170(4):1623-31. PubMed ID: 15956676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lia1p, a novel protein required during nuclear differentiation for genome-wide DNA rearrangements in Tetrahymena thermophila.
    Rexer CH; Chalker DL
    Eukaryot Cell; 2007 Aug; 6(8):1320-9. PubMed ID: 17586719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements.
    Maliszewska-Olejniczak K; Gruchota J; Gromadka R; Denby Wilkes C; Arnaiz O; Mathy N; Duharcourt S; Bétermier M; Nowak JK
    PLoS Genet; 2015 Jul; 11(7):e1005383. PubMed ID: 26177014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centromeric histone H3 is essential for vegetative cell division and for DNA elimination during conjugation in Tetrahymena thermophila.
    Cui B; Gorovsky MA
    Mol Cell Biol; 2006 Jun; 26(12):4499-510. PubMed ID: 16738316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of the Tetrahymena thermophila rDNA replication fork barrier region disrupts macronuclear rDNA excision and creates a fragile site in the micronuclear genome.
    Yakisich JS; Kapler GM
    Nucleic Acids Res; 2006; 34(2):620-34. PubMed ID: 16449202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LIA4 encodes a chromoshadow domain protein required for genomewide DNA rearrangements in Tetrahymena thermophila.
    Horrell SA; Chalker DL
    Eukaryot Cell; 2014 Oct; 13(10):1300-11. PubMed ID: 25084866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase.
    Mochizuki K; Gorovsky MA
    Genes Dev; 2005 Jan; 19(1):77-89. PubMed ID: 15598983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome downsizing during ciliate development: nuclear division of labor through chromosome restructuring.
    Coyne RS; Chalker DL; Yao MC
    Annu Rev Genet; 1996; 30():557-78. PubMed ID: 8982465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide characterization of tetrahymena thermophila chromosome breakage sites. I. Cloning and identification of functional sites.
    Hamilton E; Bruns P; Lin C; Merriam V; Orias E; Vong L; Cassidy-Hanley D
    Genetics; 2005 Aug; 170(4):1611-21. PubMed ID: 15956677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Germ line transcripts are processed by a Dicer-like protein that is essential for developmentally programmed genome rearrangements of Tetrahymena thermophila.
    Malone CD; Anderson AM; Motl JA; Rexer CH; Chalker DL
    Mol Cell Biol; 2005 Oct; 25(20):9151-64. PubMed ID: 16199890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elimination of foreign DNA during somatic differentiation in Tetrahymena thermophila shows position effect and is dosage dependent.
    Liu Y; Song X; Gorovsky MA; Karrer KM
    Eukaryot Cell; 2005 Feb; 4(2):421-31. PubMed ID: 15701804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signaling to the DEAD box--regulation of DEAD-box p68 RNA helicase by protein phosphorylations.
    Yang L; Lin C; Liu ZR
    Cell Signal; 2005 Dec; 17(12):1495-504. PubMed ID: 15927448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization and pairing of meiotic chromosomes in the ciliate Tetrahymena thermophila.
    Loidl J; Scherthan H
    J Cell Sci; 2004 Nov; 117(Pt 24):5791-801. PubMed ID: 15522890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome end formation and internal sequence elimination as alternative genomic rearrangements in the ciliate Paramecium.
    Amar L
    J Mol Biol; 1994 Feb; 236(2):421-6. PubMed ID: 8107131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.