These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 2779421)

  • 21. Assessment of lesion pathology in a new animal model of MS by multiparametric MRI and DTI.
    Boretius S; Escher A; Dallenga T; Wrzos C; Tammer R; Brück W; Nessler S; Frahm J; Stadelmann C
    Neuroimage; 2012 Feb; 59(3):2678-88. PubMed ID: 21914485
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nuclear magnetic resonance T2 relaxation times in multiple sclerosis.
    Rumbach L; Armspach JP; Gounot D; Namer IJ; Chambron J; Warter JM; Collard M
    J Neurol Sci; 1991 Aug; 104(2):176-81. PubMed ID: 1940972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of quantitative neuroimaging indices in the differentiation of ischemia from demyelination: an analytical study with case presentation.
    Hoque R; Ledbetter C; Gonzalez-Toledo E; Misra V; Menon U; Kenner M; Rabinstein AA; Kelley RE; Zivadinov R; Minagar A
    Int Rev Neurobiol; 2007; 79():491-519. PubMed ID: 17531856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intra-observer reproducibility in measuring new putative MR markers of demyelination and axonal loss in multiple sclerosis: a comparison with conventional T2-weighted images.
    Rovaris M; Filippi M; Calori G; Rodegher M; Campi A; Colombo B; Comi G
    J Neurol; 1997 Apr; 244(4):266-70. PubMed ID: 9112597
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of biexponential relaxation behaviour in the human brain by magnetic resonance imaging.
    Kjaer L; Thomsen C; Henriksen O
    Acta Radiol; 1989; 30(4):433-7. PubMed ID: 2775605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biexponential longitudinal relaxation in white matter: Characterization and impact on T1 mapping with IR-FSE and MP2RAGE.
    Rioux JA; Levesque IR; Rutt BK
    Magn Reson Med; 2016 Jun; 75(6):2265-77. PubMed ID: 26190230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results.
    de Bazelaire CM; Duhamel GD; Rofsky NM; Alsop DC
    Radiology; 2004 Mar; 230(3):652-9. PubMed ID: 14990831
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density.
    Krauss W; Gunnarsson M; Andersson T; Thunberg P
    Magn Reson Imaging; 2015 Jun; 33(5):584-91. PubMed ID: 25708264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Magnetic resonance in the diagnosis and treatment of multiple sclerosis].
    Rovira Cañellas A
    Neurologia; 2000; 15(7):288-302. PubMed ID: 11075577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Magnetic resonance imaging in multiple sclerosis].
    Tourbah A; Berry I
    Pathol Biol (Paris); 2000 Mar; 48(2):151-61. PubMed ID: 10815291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes within the "normal" cerebral white matter of multiple sclerosis patients during acute attacks and during high-dose cortisone therapy assessed by means of quantitative MRI.
    Brainin M; Neuhold A; Reisner T; Maida E; Lang S; Deecke L
    J Neurol Neurosurg Psychiatry; 1989 Dec; 52(12):1355-9. PubMed ID: 2614429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic resonance in multiple sclerosis.
    Scotti G; Scialfa G; Biondi A; Landoni L; Caputo D; Cazzullo CL
    Neuroradiology; 1986; 28(4):319-23. PubMed ID: 3762909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions. A quantitative study.
    Ormerod IE; Miller DH; McDonald WI; du Boulay EP; Rudge P; Kendall BE; Moseley IF; Johnson G; Tofts PS; Halliday AM
    Brain; 1987 Dec; 110 ( Pt 6)():1579-616. PubMed ID: 3427402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of magnetic resonance techniques in understanding and managing multiple sclerosis.
    Miller DH; Grossman RI; Reingold SC; McFarland HF
    Brain; 1998 Jan; 121 ( Pt 1)():3-24. PubMed ID: 9549485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. T2 relaxation time alterations underlying neurocognitive deficits in alcohol-use disorders (AUD) in an Indian population: A combined conventional ROI and voxel-based relaxometry analysis.
    Bagga D; Modi S; Poonia M; Kaur P; Bhattacharya D; Garg ML; Khushu S; Singh N
    Alcohol; 2015 Nov; 49(7):639-46. PubMed ID: 26537482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo estimation of relaxation processes in benign hyperplasia and carcinoma of the prostate gland by magnetic resonance imaging.
    Kjaer L; Thomsen C; Iversen P; Henriksen O
    Magn Reson Imaging; 1987; 5(1):23-30. PubMed ID: 2438532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nuclear magnetic resonance relaxation in multiple sclerosis.
    Larsson HB; Barker GJ; MacKay A
    J Neurol Neurosurg Psychiatry; 1998 May; 64 Suppl 1():S70-6. PubMed ID: 9647289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetic resonance fingerprinting using echo-planar imaging: Joint quantification of T
    Rieger B; Zimmer F; Zapp J; Weingärtner S; Schad LR
    Magn Reson Med; 2017 Nov; 78(5):1724-1733. PubMed ID: 27981641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repeatability of magnetic resonance fingerprinting T
    Jiang Y; Ma D; Keenan KE; Stupic KF; Gulani V; Griswold MA
    Magn Reson Med; 2017 Oct; 78(4):1452-1457. PubMed ID: 27790751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of MRI sequences for evaluation of multiple sclerosis of the cervical spinal cord at 3 T.
    Philpott C; Brotchie P
    Eur J Radiol; 2011 Dec; 80(3):780-5. PubMed ID: 21041051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.