These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 27794298)

  • 1. Finite element modelling of cochlear electrical coupling.
    Teal PD; Ni G
    J Acoust Soc Am; 2016 Oct; 140(4):2769. PubMed ID: 27794298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Velocity and displacement coupling of mammalian inner hair cells and the mechanical resonance of the free-standing stereocilia.
    Patuzzi R; Yates GK
    ORL J Otorhinolaryngol Relat Spec; 1986; 48(2):81-6. PubMed ID: 3703534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model of cochlear microphonic explores the tuning and magnitude of hair cell transduction current.
    Frost B; Olson ES
    Biophys J; 2021 Sep; 120(17):3550-3565. PubMed ID: 34384762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origin of tuning in turtle cochlear hair cells.
    Fettiplace R; Crawford AC
    Hear Res; 1980 Jun; 2(3-4):447-54. PubMed ID: 7410249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the generation of the cochlear microphonic.
    Ayat M; Teal PD
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7168-71. PubMed ID: 24111398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model of d.c. potentials in the cochlea: effects of voltage-dependent cilia stiffness.
    McMullen TA; Mountain DC
    Hear Res; 1985 Feb; 17(2):127-41. PubMed ID: 4008351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.
    Wang X; Wang L; Zhou J; Hu Y
    Comput Methods Biomech Biomed Engin; 2014 Aug; 17(10):1096-107. PubMed ID: 23171060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Timing of spike initiation in cochlear afferents: dependence on site of innervation.
    Ruggero MA; Rich NC
    J Neurophysiol; 1987 Aug; 58(2):379-403. PubMed ID: 3655874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling cochlear mechanics.
    Ni G; Elliott SJ; Ayat M; Teal PD
    Biomed Res Int; 2014; 2014():150637. PubMed ID: 25136555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wever and Lawrence revisited: effects of nulling basilar membrane movement on concomitant whole-nerve action potential.
    Offut G
    J Aud Res; 1986 Jan; 26(1):43-54. PubMed ID: 3610990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CM tuning can be compatible with sharply tuned receptor potentials.
    Kletsky EJ; Zwislocki JJ
    Hear Res; 1980 Jun; 2(3-4):549-57. PubMed ID: 7410260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a concha electrode to measure response patterns based on the amplitudes of cochlear microphonic waveforms across acoustic frequencies in normal-hearing subjects.
    Zhang M
    Ear Hear; 2015 Jan; 36(1):53-60. PubMed ID: 25083598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological Evidence of the Basilar-Membrane Travelling Wave and Frequency Place Coding of Sound in Cochlear Implant Recipients.
    Campbell L; Bester C; Iseli C; Sly D; Dragovic A; Gummer AW; O'Leary S
    Audiol Neurootol; 2017; 22(3):180-189. PubMed ID: 29084395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing of cochlear feedback: spatial and temporal representation of a tone across the basilar membrane.
    Nilsen KE; Russell IJ
    Nat Neurosci; 1999 Jul; 2(7):642-8. PubMed ID: 10404197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure-induced basilar membrane position shifts and the stimulus-evoked potentials in the low-frequency region of the guinea pig cochlea.
    Fridberger A; van Maarseveen JT; Scarfone E; Ulfendahl M; Flock B; Flock A
    Acta Physiol Scand; 1997 Oct; 161(2):239-52. PubMed ID: 9366967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stiffness of the gerbil basilar membrane: radial and longitudinal variations.
    Emadi G; Richter CP; Dallos P
    J Neurophysiol; 2004 Jan; 91(1):474-88. PubMed ID: 14523077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Correlation of changes in compound action potential (CAP) tuning curves and cochlear lesion in guinea pigs after explosion].
    Han D
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1989; 24(2):66-9, 126. PubMed ID: 2701993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outer hair cell active force generation in the cochlear environment.
    Liao Z; Feng S; Popel AS; Brownell WE; Spector AA
    J Acoust Soc Am; 2007 Oct; 122(4):2215-25. PubMed ID: 17902857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes.
    Cormack J; Liu Y; Nam JH; Gracewski SM
    J Acoust Soc Am; 2015 Mar; 137(3):1117-25. PubMed ID: 25786927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.