These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 27794328)

  • 1. Fluid pressure diffusion effects on the seismic reflectivity of a single fracture.
    Barbosa ND; Rubino JG; Caspari E; Milani M; Holliger K
    J Acoust Soc Am; 2016 Oct; 140(4):2554. PubMed ID: 27794328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poroelastic modeling of seismic boundary conditions across a fracture.
    Nakagawa S; Schoenberg MA
    J Acoust Soc Am; 2007 Aug; 122(2):831-47. PubMed ID: 17672634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of a normally-incident plane wave with a nonlinear poroelastic fracture.
    Nakagawa S; Pride SR; Nihei KT
    J Acoust Soc Am; 2019 Sep; 146(3):1705. PubMed ID: 31590557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reflection and transmission coefficients of a single layer in poroelastic media.
    Corredor RM; Santos JE; Gauzellino PM; Carcione JM
    J Acoust Soc Am; 2014 Jun; 135(6):3151-62. PubMed ID: 24907781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of fracture compliance on wave propagation within a fluid-filled fracture.
    Nakagawa S; Korneev VA
    J Acoust Soc Am; 2014 Jun; 135(6):3186-97. PubMed ID: 24907784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbations of the seismic reflectivity of a fluid-saturated depth-dependent poroelastic medium.
    de Barros L; Dietrich M
    J Acoust Soc Am; 2008 Mar; 123(3):1409-20. PubMed ID: 18345830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of fracture permeability on acoustic wave propagation in the porous media: A microscopic perspective.
    Wang D; Wang L; Ding P
    Ultrasonics; 2016 Aug; 70():266-74. PubMed ID: 27259119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic response of patchy-saturated porous media: Coupling Biot's poroelasticity equations for mono- and biphasic pore fluids.
    Solazzi SG; Castromán GA; Barbosa ND; Holliger K; Rubino JG
    J Acoust Soc Am; 2024 Aug; 156(2):1324-1342. PubMed ID: 39177362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seismic wave attenuation and dispersion due to wave-induced fluid flow in rocks with strong permeability fluctuations.
    Germán Rubino J; Monachesi LB; Müller TM; Guarracino L; Holliger K
    J Acoust Soc Am; 2013 Dec; 134(6):4742. PubMed ID: 25669286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenomenological model of propagation of the elastic waves in a fluid-saturated porous solid with nonzero boundary slip velocity.
    Tsiklauri D
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):843-9. PubMed ID: 12243170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic wave scattering by a fluid-saturated circular crack and effective properties of a solid with a sparse distribution of aligned cracks.
    Song Y; Hu H; Han B
    J Acoust Soc Am; 2019 Jul; 146(1):470. PubMed ID: 31370637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A parametric analysis of waves propagating in a porous solid saturated by a three-phase fluid.
    Santos JE; Savioli GB
    J Acoust Soc Am; 2015 Nov; 138(5):3033-42. PubMed ID: 26627777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for wave propagation in a porous solid saturated by a three-phase fluid.
    Santos JE; Savioli GB
    J Acoust Soc Am; 2016 Feb; 139(2):693-702. PubMed ID: 26936553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic response and liquefaction potential of porous seabed induced by partial standing ocean waves.
    Wang G; Liu Y; Liu K; Xu C
    Sci Rep; 2023 Nov; 13(1):19061. PubMed ID: 37925568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dispersion in poroelastic systems.
    Berryman JG; Wang HF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011303. PubMed ID: 11461245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the Surfactant Transport Law Based on an Improved Adsorption Model with an Artificial Seismic Wave.
    Liu J; Xia L; Xia J; Li Z; Yang T; Wu F
    Langmuir; 2022 Mar; 38(12):3687-3693. PubMed ID: 35289173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reflection and transmission characteristics of a layer obeying the two-pressure field poroelastic phenomenological model of Berryman and Wang.
    Kachkouch F; Franklin H; Tinel A
    Ultrasonics; 2018 Jul; 87():71-81. PubMed ID: 29475015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seismoelectric reflection and transmission at a fluid/porous-medium interface.
    Schakel M; Smeulders D
    J Acoust Soc Am; 2010 Jan; 127(1):13-21. PubMed ID: 20058946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical extension of White's theory of P-wave attenuation to non-isothermal poroelastic media.
    Zapata NDA; Santos JE; Savioli GB; Carcione JM; Ba J
    J Acoust Soc Am; 2024 Feb; 155(2):1486-1491. PubMed ID: 38364048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional elastic wave scattering by a layer containing vertical periodic fractures.
    Nakagawa S; Nihei KT; Myer LR; Majer EL
    J Acoust Soc Am; 2003 Jun; 113(6):3012-23. PubMed ID: 12822772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.