BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27794613)

  • 21. Tuning peptoid secondary structure with pentafluoroaromatic functionality: a new design paradigm for the construction of discretely folded peptoid structures.
    Gorske BC; Blackwell HE
    J Am Chem Soc; 2006 Nov; 128(44):14378-87. PubMed ID: 17076512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface-Directed Assembly of Sequence-Defined Synthetic Polymers into Networks of Hexagonally Patterned Nanoribbons with Controlled Functionalities.
    Chen CL; Zuckermann RN; DeYoreo JJ
    ACS Nano; 2016 May; 10(5):5314-20. PubMed ID: 27136277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids.
    Jin H; Ding YH; Wang M; Song Y; Liao Z; Newcomb CJ; Wu X; Tang XQ; Li Z; Lin Y; Yan F; Jian T; Mu P; Chen CL
    Nat Commun; 2018 Jan; 9(1):270. PubMed ID: 29348551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural Elucidation of a Polypeptoid Chain in a Crystalline Lattice Reveals Key Morphology-Directing Role of the N-Terminus.
    Yu T; Luo X; Prendergast D; Butterfoss GL; Rad B; Balsara NP; Zuckermann RN; Jiang X
    ACS Nano; 2023 Mar; 17(5):4958-4970. PubMed ID: 36821346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploiting Saturation Regimes and Surface Effects to Tune Composite Design: Single Platelet Nanocomposites of Peptoid Nanosheets and CaCO
    Ucar S; Nielsen AR; Mojsoska B; Dideriksen K; Andreassen JP; Zuckermann RN; Sand KK
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):19496-19506. PubMed ID: 38568217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling sequence-specific polymers using anisotropic coarse-grained sites allows quantitative comparison with experiment.
    Haxton TK; Mannige RV; Zuckermann RN; Whitelam S
    J Chem Theory Comput; 2015 Jan; 11(1):303-15. PubMed ID: 26574228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of including an N-terminal insertion region and arginine-mimetic side chains in helical peptoid analogues of lung surfactant protein B.
    Seurynck-Servoss SL; Dohm MT; Barron AE
    Biochemistry; 2006 Oct; 45(39):11809-18. PubMed ID: 17002281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peptoid origins.
    Zuckermann RN
    Biopolymers; 2011; 96(5):545-55. PubMed ID: 21184486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.
    Winterhalter M; Bürner H; Marzinka S; Benz R; Kasianowicz JJ
    Biophys J; 1995 Oct; 69(4):1372-81. PubMed ID: 8534807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved chemical and mechanical stability of peptoid nanosheets by photo-crosslinking the hydrophobic core.
    Flood D; Proulx C; Robertson EJ; Battigelli A; Wang S; Schwartzberg AM; Zuckermann RN
    Chem Commun (Camb); 2016 Apr; 52(26):4753-6. PubMed ID: 26864502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peptoids at the 7th Summit: toward macromolecular systems engineering.
    Drexler KE
    Biopolymers; 2011; 96(5):537-44. PubMed ID: 22180902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of interfacial molecular recognition of non-surface-active species on the main characteristics of monolayers.
    Vollhardt D
    Adv Colloid Interface Sci; 2005 Nov; 116(1-3):63-80. PubMed ID: 16122691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein side-chain translocation mutagenesis via incorporation of peptoid residues.
    Lee BC; Zuckermann RN
    ACS Chem Biol; 2011 Dec; 6(12):1367-74. PubMed ID: 21958072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Early-Stage Aggregation and Crystalline Interactions of Peptoid Nanomembranes.
    Hammons JA; Baer MD; Jian T; Lee JRI; Weiss TM; De Yoreo JJ; Noy A; Chen CL; Van Buuren A
    J Phys Chem Lett; 2021 Jul; 12(26):6126-6133. PubMed ID: 34181429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery of Stable and Selective Antibody Mimetics from Combinatorial Libraries of Polyvalent, Loop-Functionalized Peptoid Nanosheets.
    Kim JH; Kim SC; Kline MA; Grzincic EM; Tresca BW; Cardiel J; Karbaschi M; Dehigaspitiya DC; Chen Y; Udumula V; Jian T; Murray DJ; Yun L; Connolly MD; Liu J; Ren G; Chen CL; Kirshenbaum K; Abate AR; Zuckermann RN
    ACS Nano; 2020 Jan; 14(1):185-195. PubMed ID: 31789500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of chitosan with cell membrane models at the air-water interface.
    Pavinatto FJ; Pavinatto A; Caseli L; Santos DS; Nobre TM; Zaniquelli ME; Oliveira ON
    Biomacromolecules; 2007 May; 8(5):1633-40. PubMed ID: 17419586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monolayers of the lipid derivatives of isoniazid at the air/water interface and the formation of self-assembled nanostructures in water.
    Jin Y; Chen S; Xin R; Zhou Y
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):229-35. PubMed ID: 18329860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles.
    Sun J; Jiang X; Lund R; Downing KH; Balsara NP; Zuckermann RN
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):3954-9. PubMed ID: 27035944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monolayer collapse regulating process of adsorption-desorption of palladium nanoparticles at fatty acid monolayers at the air-water interface.
    Goto TE; Lopez RF; Iost RM; Crespilho FN; Caseli L
    Langmuir; 2011 Mar; 27(6):2667-75. PubMed ID: 21314156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. para-Xylene Ultra-selective Zeolite MFI Membranes Fabricated from Nanosheet Monolayers at the Air-Water Interface.
    Kim D; Jeon MY; Stottrup BL; Tsapatsis M
    Angew Chem Int Ed Engl; 2018 Jan; 57(2):480-485. PubMed ID: 29194920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.