These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27794619)

  • 1. Molecular Understanding of the Penetration of Functionalized Gold Nanoparticles into Asymmetric Membranes.
    Quan X; Peng C; Zhao D; Li L; Fan J; Zhou J
    Langmuir; 2017 Jan; 33(1):361-371. PubMed ID: 27794619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interplay between surface-functionalized gold nanoparticles and negatively charged lipid vesicles.
    Quan X; Zhao D; Zhou J
    Phys Chem Chem Phys; 2021 Oct; 23(41):23526-23536. PubMed ID: 34642720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship.
    Lin J; Zhang H; Chen Z; Zheng Y
    ACS Nano; 2010 Sep; 4(9):5421-9. PubMed ID: 20799717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-Dependent aggregation and pH-independent cell membrane adhesion of monolayer-protected mixed charged gold nanoparticles.
    Shen Z; Baker W; Ye H; Li Y
    Nanoscale; 2019 Apr; 11(15):7371-7385. PubMed ID: 30938720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between charged nanoparticles and vesicles: coarse-grained molecular dynamics simulations.
    Liu L; Zhang J; Zhao X; Mao Z; Liu N; Zhang Y; Liu QH
    Phys Chem Chem Phys; 2016 Nov; 18(46):31946-31957. PubMed ID: 27844088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of temperature and PEG grafting density on the translocation of PEGylated nanoparticles across asymmetric lipid membrane.
    Zhang Z; Lin X; Gu N
    Colloids Surf B Biointerfaces; 2017 Dec; 160():92-100. PubMed ID: 28918189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers.
    Gao J; Zhang O; Ren J; Wu C; Zhao Y
    Langmuir; 2016 Feb; 32(6):1601-10. PubMed ID: 26794292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Surface Functionalization on Cellular Uptake of AuNPs Characterized by Computational Microscopy.
    Lunnoo T; Assawakhajornsak J; Ruangchai S; Puangmali T
    J Phys Chem B; 2020 Mar; 124(10):1898-1908. PubMed ID: 32040917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simulation study on nanoscale holes generated by gold nanoparticles on negative lipid bilayers.
    Lin JQ; Zheng YG; Zhang HW; Chen Z
    Langmuir; 2011 Jul; 27(13):8323-32. PubMed ID: 21634406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-lipid and ligand-core affinity control the interaction of gold nanoparticles with artificial lipid bilayers and cell membranes.
    Broda J; Setzler J; Leifert A; Steitz J; Benz R; Simon U; Wenzel W
    Nanomedicine; 2016 Jul; 12(5):1409-19. PubMed ID: 26773462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the Cellular Uptake of pH-Responsive Zwitterionic Gold Nanoparticles: A Computer Simulation Study.
    Quan X; Zhao D; Li L; Zhou J
    Langmuir; 2017 Dec; 33(50):14480-14489. PubMed ID: 29166558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free energy change for insertion of charged, monolayer-protected nanoparticles into lipid bilayers.
    Van Lehn RC; Alexander-Katz A
    Soft Matter; 2014 Jan; 10(4):648-58. PubMed ID: 24795979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Size and Surface Charge of Gold Nanoparticles on their Skin Permeability: A Molecular Dynamics Study.
    Gupta R; Rai B
    Sci Rep; 2017 Mar; 7():45292. PubMed ID: 28349970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing nanoparticle translocation through membranes by computer simulations.
    Ding HM; Tian WD; Ma YQ
    ACS Nano; 2012 Feb; 6(2):1230-8. PubMed ID: 22208867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle translocation through a lipid bilayer tuned by surface chemistry.
    da Rocha EL; Caramori GF; Rambo CR
    Phys Chem Chem Phys; 2013 Feb; 15(7):2282-90. PubMed ID: 23223270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism of HIV-1 TAT peptide and its conjugated gold nanoparticles translocating across lipid membranes.
    Quan X; Sun D; Zhou J
    Phys Chem Chem Phys; 2019 May; 21(20):10300-10310. PubMed ID: 31070638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes.
    Van Lehn RC; Ricci M; Silva PH; Andreozzi P; Reguera J; Voïtchovsky K; Stellacci F; Alexander-Katz A
    Nat Commun; 2014 Jul; 5():4482. PubMed ID: 25042518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of neutral gold nanoparticles with DPPC and POPC lipid bilayers: simulation and experiment.
    Zolghadr AR; Moosavi SS
    RSC Adv; 2019 Feb; 9(9):5197-5205. PubMed ID: 35514645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural properties of polymer-brush-grafted gold nanoparticles at the oil-water interface: insights from coarse-grained simulations.
    Quan X; Peng C; Dong J; Zhou J
    Soft Matter; 2016 Apr; 12(14):3352-9. PubMed ID: 26954721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.