These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 27795406)
1. Impact of AmpC Derepression on Fitness and Virulence: the Mechanism or the Pathway? Pérez-Gallego M; Torrens G; Castillo-Vera J; Moya B; Zamorano L; Cabot G; Hultenby K; Albertí S; Mellroth P; Henriques-Normark B; Normark S; Oliver A; Juan C mBio; 2016 Oct; 7(5):. PubMed ID: 27795406 [TBL] [Abstract][Full Text] [Related]
2. Role of Enzymatic Activity in the Biological Cost Associated with the Production of AmpC β-Lactamases in Pseudomonas aeruginosa. Barceló IM; Jordana-Lluch E; Escobar-Salom M; Torrens G; Fraile-Ribot PA; Cabot G; Mulet X; Zamorano L; Juan C; Oliver A Microbiol Spectr; 2022 Oct; 10(5):e0270022. PubMed ID: 36214681 [TBL] [Abstract][Full Text] [Related]
3. In Vivo Validation of Peptidoglycan Recycling as a Target to Disable AmpC-Mediated Resistance and Reduce Virulence Enhancing the Cell-Wall-Targeting Immunity. Torrens G; Sánchez-Diener I; Jordana-Lluch E; Barceló IM; Zamorano L; Juan C; Oliver A J Infect Dis; 2019 Oct; 220(11):1729-1737. PubMed ID: 31325363 [TBL] [Abstract][Full Text] [Related]
4. Impact of Peptidoglycan Recycling Blockade and Expression of Horizontally Acquired β-Lactamases on Pseudomonas aeruginosa Virulence. Barceló IM; Torrens G; Escobar-Salom M; Jordana-Lluch E; Capó-Bauzá MM; Ramón-Pallín C; García-Cuaresma D; Fraile-Ribot PA; Mulet X; Oliver A; Juan C Microbiol Spectr; 2022 Feb; 10(1):e0201921. PubMed ID: 35171032 [TBL] [Abstract][Full Text] [Related]
5. Benefit of having multiple ampD genes for acquiring beta-lactam resistance without losing fitness and virulence in Pseudomonas aeruginosa. Moya B; Juan C; Albertí S; Pérez JL; Oliver A Antimicrob Agents Chemother; 2008 Oct; 52(10):3694-700. PubMed ID: 18644952 [TBL] [Abstract][Full Text] [Related]
6. Role of ampD homologs in overproduction of AmpC in clinical isolates of Pseudomonas aeruginosa. Schmidtke AJ; Hanson ND Antimicrob Agents Chemother; 2008 Nov; 52(11):3922-7. PubMed ID: 18779353 [TBL] [Abstract][Full Text] [Related]
7. Inactivation of the ampD gene in Pseudomonas aeruginosa leads to moderate-basal-level and hyperinducible AmpC beta-lactamase expression. Langaee TY; Gagnon L; Huletsky A Antimicrob Agents Chemother; 2000 Mar; 44(3):583-9. PubMed ID: 10681322 [TBL] [Abstract][Full Text] [Related]
8. Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level beta-lactam resistance involves three AmpD homologues. Juan C; Moyá B; Pérez JL; Oliver A Antimicrob Agents Chemother; 2006 May; 50(5):1780-7. PubMed ID: 16641450 [TBL] [Abstract][Full Text] [Related]
9. Cell Wall Recycling-Linked Coregulation of AmpC and PenB β-Lactamases through ampD Mutations in Burkholderia cenocepacia. Hwang J; Kim HS Antimicrob Agents Chemother; 2015 Dec; 59(12):7602-10. PubMed ID: 26416862 [TBL] [Abstract][Full Text] [Related]
10. A potential space-making role in cell wall biogenesis for SltB1and DacB revealed by a beta-lactamase induction phenotype in Gyger J; Torrens G; Cava F; Bernhardt TG; Fumeaux C mBio; 2024 Jul; 15(7):e0141924. PubMed ID: 38920394 [TBL] [Abstract][Full Text] [Related]
11. Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in Pseudomonas aeruginosa. Asgarali A; Stubbs KA; Oliver A; Vocadlo DJ; Mark BL Antimicrob Agents Chemother; 2009 Jun; 53(6):2274-82. PubMed ID: 19273679 [TBL] [Abstract][Full Text] [Related]