BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 27795426)

  • 1. The Long and Complicated Relationship between Epstein-Barr Virus and Epithelial Cells.
    Hutt-Fletcher LM
    J Virol; 2017 Jan; 91(1):. PubMed ID: 27795426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases.
    Niller HH; Wolf H; Minarovits J
    Autoimmunity; 2008 May; 41(4):298-328. PubMed ID: 18432410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human B cells on their route to latent infection--early but transient expression of lytic genes of Epstein-Barr virus.
    Kalla M; Hammerschmidt W
    Eur J Cell Biol; 2012 Jan; 91(1):65-9. PubMed ID: 21450364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BZLF1 transcript variants in Epstein-Barr virus-positive epithelial cell lines.
    Needham J; Adamson AL
    Virus Genes; 2019 Dec; 55(6):779-785. PubMed ID: 31552622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of Rta in B Lymphocytes during Epstein-Barr Virus Latency.
    Hwang SP; Huang LC; Wang WH; Lin MH; Kuo CW; Huang HH; Chang LK
    J Mol Biol; 2020 Sep; 432(19):5227-5243. PubMed ID: 32710985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular differentiation regulator BLIMP1 induces Epstein-Barr virus lytic reactivation in epithelial and B cells by activating transcription from both the R and Z promoters.
    Reusch JA; Nawandar DM; Wright KL; Kenney SC; Mertz JE
    J Virol; 2015 Feb; 89(3):1731-43. PubMed ID: 25410866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The danger molecule HMGB1 cooperates with the NLRP3 inflammasome to sustain expression of the EBV lytic switch protein in Burkitt lymphoma cells.
    Reinhart NM; Akinyemi IA; Frey TR; Xu H; Agudelo C; Brathwaite J; Burton EM; Burgula S; McIntosh MT; Bhaduri-McIntosh S
    Virology; 2022 Jan; 566():136-142. PubMed ID: 34922257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ins and outs of EBV infection.
    Faulkner GC; Krajewski AS; Crawford DH
    Trends Microbiol; 2000 Apr; 8(4):185-9. PubMed ID: 10754578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epstein-Barr virus latency: LMP2, a regulator or means for Epstein-Barr virus persistence?
    Longnecker R
    Adv Cancer Res; 2000; 79():175-200. PubMed ID: 10818681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Epstein-barr virus gene expression in latent infection and B-lymphocyte growth transformation].
    Harada S
    Uirusu; 2002 Jun; 52(1):129-34. PubMed ID: 12227161
    [No Abstract]   [Full Text] [Related]  

  • 11. Epigenetic crossroads of the Epstein-Barr virus B-cell relationship.
    Frost TC; Gewurz BE
    Curr Opin Virol; 2018 Oct; 32():15-23. PubMed ID: 30227386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biological properties of different Epstein-Barr virus strains explain their association with various types of cancers.
    Tsai MH; Lin X; Shumilov A; Bernhardt K; Feederle R; Poirey R; Kopp-Schneider A; Pereira B; Almeida R; Delecluse HJ
    Oncotarget; 2017 Feb; 8(6):10238-10254. PubMed ID: 28052012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell.
    Babcock GJ; Hochberg D; Thorley-Lawson AD
    Immunity; 2000 Oct; 13(4):497-506. PubMed ID: 11070168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dominant-negative derivative of EBNA1 represses EBNA1-mediated transforming gene expression during the acute phase of Epstein-Barr virus infection independent of rapid loss of viral genome.
    Kariya Y; Hamatake M; Urano E; Yoshiyama H; Shimizu N; Komano J
    Cancer Sci; 2010 Apr; 101(4):876-81. PubMed ID: 20132216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Viral and Host microRNAs in Immune Regulation of Epstein-Barr Virus-Associated Diseases.
    Iizasa H; Kim H; Kartika AV; Kanehiro Y; Yoshiyama H
    Front Immunol; 2020; 11():367. PubMed ID: 32194570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Epstein-Barr virus reservoir in plasma cells derived from infected peripheral blood memory B cells.
    Al Tabaa Y; Tuaillon E; Bollore K; Foulongne V; Petitjean G; Seigneurin JM; Duperray C; Desgranges C; Vendrell JP
    Blood; 2009 Jan; 113(3):604-11. PubMed ID: 18845794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epstein-Barr Virus (EBV)-Related Lymphoproliferative Disorders in Ataxia Telangiectasia: Does ATM Regulate EBV Life Cycle?
    Tatfi M; Hermine O; Suarez F
    Front Immunol; 2018; 9():3060. PubMed ID: 30662441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Features distinguishing Epstein-Barr virus infections of epithelial cells and B cells: viral genome expression, genome maintenance, and genome amplification.
    Shannon-Lowe C; Adland E; Bell AI; Delecluse HJ; Rickinson AB; Rowe M
    J Virol; 2009 Aug; 83(15):7749-60. PubMed ID: 19439479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mice with Reconstituted Human Immune System Components as a Tool to Study Immune Cell Interactions in EBV Infection.
    Heuts F; Nagy N
    Methods Mol Biol; 2017; 1532():229-240. PubMed ID: 27873280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Molecular biological properties of the Epstein-Barr virus LMP1 gene: structure, function and polymorphism].
    Smirnova KV; Diduk SV; Senyuta NB; Gurtsevitch VE
    Vopr Virusol; 2015; 60(3):5-13. PubMed ID: 26281300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.