These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2779544)

  • 21. Glucose and palmitate metabolism by beating rat heart cells in culture.
    Frelin C; Pinson A; Athias P; Surville JM; Padieu P
    Pathol Biol (Paris); 1979 Jan; 27(1):45-50. PubMed ID: 379752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidation of carbohydrates and palmitate by intact cultured neonatal rat heart cells.
    Ross PD; McCarl RL
    Am J Physiol; 1984 Mar; 246(3 Pt 2):H389-97. PubMed ID: 6367488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energetic response of coronary endothelial cells to hypoxia.
    Mertens S; Noll T; Spahr R; Krützfeldt A; Piper HM
    Am J Physiol; 1990 Mar; 258(3 Pt 2):H689-94. PubMed ID: 2316683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium regulation of glycolysis, glucose oxidation, and fatty acid oxidation in the aerobic and ischemic heart.
    Schönekess BO; Brindley PG; Lopaschuk GD
    Can J Physiol Pharmacol; 1995 Nov; 73(11):1632-40. PubMed ID: 8789418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship between coronary flow and adenosine triphosphate production from glycolysis and oxidative metabolism.
    Neely JR; Liedtke AJ; Whitmer JT; Rovetto MJ
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():301-21. PubMed ID: 1215640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The metabolism of lipids in mouse pancreatic islets. The oxidation of fatty acids and ketone bodies.
    Berne C
    Biochem J; 1975 Dec; 152(3):661-6. PubMed ID: 776173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel role of endothelial autophagy as a regulator of myocardial fatty acid oxidation.
    Altamimi TR; Chowdhury B; Singh KK; Zhang L; Mahmood MU; Pan Y; Quan A; Teoh H; Verma S; Lopaschuk GD
    J Thorac Cardiovasc Surg; 2019 Jan; 157(1):185-193. PubMed ID: 30195591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel partial fatty acid oxidation inhibitor decreases myocardial oxygen consumption and improves cardiac efficiency in demand-induced ischemic heart.
    Wu L; Belardinelli L; Fraser H
    J Cardiovasc Pharmacol; 2008 Apr; 51(4):372-9. PubMed ID: 18427280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of pent-4-enoate on cellular redox state, glycolysis and fatty acid oxidation in isolated perfused rat heart.
    Hiltunen JK; Jauhonen VP; Savolainen MJ; Hassinen IE
    Biochem J; 1978 Feb; 170(2):235-40. PubMed ID: 205208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells.
    Dagher Z; Ruderman N; Tornheim K; Ido Y
    Circ Res; 2001 Jun; 88(12):1276-82. PubMed ID: 11420304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of TA-3090, a new calcium channel blocker, on myocardial substrate utilization in ischemic and nonischemic isolated working fatty acid-perfused rat hearts.
    Davies NJ; McVeigh JJ; Lopaschuk GD
    Circ Res; 1991 Mar; 68(3):807-17. PubMed ID: 1742868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism.
    Brand K
    Biochem J; 1985 Jun; 228(2):353-61. PubMed ID: 2861809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Palmitate and glucose oxidation by fetal type II pneumocytes.
    Engle MJ; Dehring AF
    Biochim Biophys Acta; 1987 Feb; 923(2):323-5. PubMed ID: 3814621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contribution of tissue acidosis to ischemic injury in the perfused rat heart.
    Williamson JR; Schaffer SW; Ford C; Safer B
    Circulation; 1976 Mar; 53(3 Suppl):I3-14. PubMed ID: 3293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation.
    Awan MM; Saggerson ED
    Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):61-6. PubMed ID: 8216240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolism of freshly isolated human hair follicles capable of hair elongation: a glutaminolytic, aerobic glycolytic tissue.
    Williams R; Philpott MP; Kealey T
    J Invest Dermatol; 1993 Jun; 100(6):834-40. PubMed ID: 8496624
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucose and fatty acid metabolism in the isolated working mouse heart.
    Belke DD; Larsen TS; Lopaschuk GD; Severson DL
    Am J Physiol; 1999 Oct; 277(4):R1210-7. PubMed ID: 10516264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maximum activities of some key enzymes of glycolysis, glutaminolysis, Krebs cycle and fatty acid utilization in bovine pulmonary endothelial cells.
    Leighton B; Curi R; Hussein A; Newsholme EA
    FEBS Lett; 1987 Dec; 225(1-2):93-6. PubMed ID: 3691808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The contribution of glycolysis, glucose oxidation, lactate oxidation, and fatty acid oxidation to ATP production in isolated biventricular working hearts from 2-week-old rabbits.
    Itoi T; Lopaschuk GD
    Pediatr Res; 1993 Dec; 34(6):735-41. PubMed ID: 8108185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase.
    Kantor PF; Lucien A; Kozak R; Lopaschuk GD
    Circ Res; 2000 Mar; 86(5):580-8. PubMed ID: 10720420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.