These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 27795746)

  • 1. Surface micromachining of polydimethylsiloxane for microfluidics applications.
    Hill S; Qian W; Chen W; Fu J
    Biomicrofluidics; 2016 Sep; 10(5):054114. PubMed ID: 27795746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photolithographic surface micromachining of polydimethylsiloxane (PDMS).
    Chen W; Lam RH; Fu J
    Lab Chip; 2012 Jan; 12(2):391-5. PubMed ID: 22089984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SU8 etch mask for patterning PDMS and its application to flexible fluidic microactuators.
    Gorissen B; Van Hoof C; Reynaerts D; De Volder M
    Microsyst Nanoeng; 2016; 2():16045. PubMed ID: 31057834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between the Young's modulus and dry etching rate of polydimethylsiloxane (PDMS).
    Fitzgerald ML; Tsai S; Bellan LM; Sappington R; Xu Y; Li D
    Biomed Microdevices; 2019 Mar; 21(1):26. PubMed ID: 30826983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust block copolymer mask for nanopatterning polymer films.
    Chao CC; Wang TC; Ho RM; Georgopanos P; Avgeropoulos A; Thomas EL
    ACS Nano; 2010 Apr; 4(4):2088-94. PubMed ID: 20201544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications.
    Grist SM; Oyunerdene N; Flueckiger J; Kim J; Wong PC; Chrostowski L; Cheung KC
    Analyst; 2014 Nov; 139(22):5718-27. PubMed ID: 25230092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Reactive Ion Etching and Applications of High-Aspect-Ratio Microfabrication.
    Huff M
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micropatterning with a liquid crystal display (LCD) projector.
    Itoga K; Kobayashi J; Yamato M; Okano T
    Methods Cell Biol; 2014; 119():141-58. PubMed ID: 24439283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the Mechanism of Maskless Nanopatterning of Black Silicon by CF
    Ghezzi F; Pedroni M; Kovač J; Causa F; Cremona A; Anderle M; Caniello R; Pietralunga SM; Vassallo E
    ACS Omega; 2022 Jul; 7(29):25600-25612. PubMed ID: 35910127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacuum-driven power-free microfluidics utilizing the gas solubility or permeability of polydimethylsiloxane (PDMS).
    Xu L; Lee H; Jetta D; Oh KW
    Lab Chip; 2015 Oct; 15(20):3962-79. PubMed ID: 26329518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple One-Step and Rapid Patterning of PDMS Microfluidic Device Wettability for PDMS Shell Production.
    Feng C; Takahashi K; Zhu J
    Front Bioeng Biotechnol; 2022; 10():891213. PubMed ID: 35519623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of a Microfluidic Cell Culture Device Using Photolithographic and Soft Lithographic Techniques.
    Christoffersson J; Mandenius CF
    Methods Mol Biol; 2019; 1994():227-233. PubMed ID: 31124120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of polydimethylsiloxane by the cataractous eye protein isolate.
    Parveen S; Basu M; Chowdhury P; Dhara T; DasGupta S; Das S; Dasgupta S
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129470. PubMed ID: 38237817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Preliminary Experimental Study of Polydimethylsiloxane (PDMS)-To-PDMS Bonding Using Oxygen Plasma Treatment Incorporating Isopropyl Alcohol.
    Tony A; Badea I; Yang C; Liu Y; Wang K; Yang SM; Zhang W
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for microfluidic device applications.
    Wang B; Abdulali-Kanji Z; Dodwell E; Horton JH; Oleschuk RD
    Electrophoresis; 2003 May; 24(9):1442-50. PubMed ID: 12731032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncovalent reversible binding-enabled facile fabrication of leak-free PDMS microfluidic devices without plasma treatment for convenient cell loading and retrieval.
    Jiang B; White A; Ou W; Van Belleghem S; Stewart S; Shamul JG; Rahaman SO; Fisher JP; He X
    Bioact Mater; 2022 Oct; 16():346-358. PubMed ID: 35386332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Analysis of Laser Micromachining of Microchannels in Common Microfluidic Substrates.
    Konari PR; Clayton YD; Vaughan MB; Khandaker M; Hossan MR
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33525394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PDMS bonding to a bio-friendly photoresist via self-polymerized poly(dopamine) adhesive for complex protein micropatterning inside microfluidic channels.
    Kim M; Song KH; Doh J
    Colloids Surf B Biointerfaces; 2013 Dec; 112():134-8. PubMed ID: 23973671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells.
    Peterson SL; McDonald A; Gourley PL; Sasaki DY
    J Biomed Mater Res A; 2005 Jan; 72(1):10-8. PubMed ID: 15534867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.