These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 27796271)

  • 1. Field-effect modulation of the thermoelectric characteristics of silicon nanowires on plastic substrates.
    Choi J; Jeon Y; Cho K; Kim S
    Nanotechnology; 2016 Dec; 27(48):485401. PubMed ID: 27796271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seebeck coefficient characterization of highly doped n- and p-type silicon nanowires for thermoelectric device applications fabricated with top-down approach.
    Kim J; Hyun Y; Park Y; Choi W; Kim S; Jeon H; Zyung T; Jang M
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6416-9. PubMed ID: 24205673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Seebeck coefficients in n- and p-type silicon nanowires fabricated by complementary metal-oxide-semiconductor technology.
    Hyun Y; Park Y; Choi W; Kim J; Zyung T; Jang M
    Nanotechnology; 2012 Oct; 23(40):405707. PubMed ID: 22995969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field-effect modulation of thermoelectric properties in multigated silicon nanowires.
    Curtin BM; Codecido EA; Krämer S; Bowers JE
    Nano Lett; 2013; 13(11):5503-8. PubMed ID: 24138582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seebeck coefficient of nanowires interconnected into large area networks.
    Pennelli G; Totaro M; Piotto M; Bruschi P
    Nano Lett; 2013 Jun; 13(6):2592-7. PubMed ID: 23668777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoelectric power factor of ternary single-crystalline Sb2Te3- and Bi2Te3-based nanowires.
    Bäßler S; Böhnert T; Gooth J; Schumacher C; Pippel E; Nielsch K
    Nanotechnology; 2013 Dec; 24(49):495402. PubMed ID: 24231731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoelectric Property Enhancement of Tellurium Nanowires by Surface Passivation.
    Shah SZH; Aabdin Z; Tjiu WW; Nong W; Recatala-Gomez J; Chellappan V; Zhai W; Repaka DVM; Wu G; Hippalgaonkar K; Nandhakumar I; Kumar P
    ACS Appl Mater Interfaces; 2024 Sep; 16(35):46191-46199. PubMed ID: 39166740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of thermoelectric power factor via radial dopant inhomogeneity in B-doped Si nanowires.
    Zhuge F; Yanagida T; Fukata N; Uchida K; Kanai M; Nagashima K; Meng G; He Y; Rahong S; Li X; Kawai T
    J Am Chem Soc; 2014 Oct; 136(40):14100-6. PubMed ID: 25229842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic and thermal transport study of sinusoidally corrugated nanowires aiming to improve thermoelectric efficiency.
    Park KH; Martin PN; Ravaioli U
    Nanotechnology; 2016 Jan; 27(3):035401. PubMed ID: 26650977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping.
    Pei YL; Wu H; Wu D; Zheng F; He J
    J Am Chem Soc; 2014 Oct; 136(39):13902-8. PubMed ID: 25238235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Power Thermoelectric Generator Based on Vertical Silicon Nanowires.
    Elyamny S; Dimaggio E; Magagna S; Narducci D; Pennelli G
    Nano Lett; 2020 Jul; 20(7):4748-4753. PubMed ID: 32463681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced thermoelectric performance of PEDOT:PSS flexible bulky papers by treatment with secondary dopants.
    Mengistie DA; Chen CH; Boopathi KM; Pranoto FW; Li LJ; Chu CW
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):94-100. PubMed ID: 25475257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Closely Packed Polypyrroles via Ionic Cross-Linking: Correlation of Molecular Structure-Morphology-Thermoelectric Properties.
    Park J; Lee Y; Kim M; Kim Y; Tripathi A; Kwon YW; Kwak J; Woo HY
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1110-1119. PubMed ID: 31825593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires.
    Song E; Li Q; Swartzentruber B; Pan W; Wang GT; Martinez JA
    Nanotechnology; 2016 Jan; 27(1):015204. PubMed ID: 26606258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Preparation of Highly Conductive Metal Oxides by Self-Combustion for Solution-Processed Thermoelectric Generators.
    Kang YH; Jang KS; Lee C; Cho SY
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5216-23. PubMed ID: 26856774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Length-dependent thermoelectric characteristics of silicon nanowires on plastics in a relatively low temperature regime in ambient air.
    Choi J; Cho K; Kim S
    Nanotechnology; 2013 Nov; 24(45):455402. PubMed ID: 24141226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical transport and thermoelectric properties of boron carbide nanowires.
    Kirihara K; Mukaida M; Shimizu Y
    Nanotechnology; 2017 Apr; 28(14):145404. PubMed ID: 28207418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Thermoelectric Performance of n-Type Organic Semiconductor via Electric Field Modulated Photo-Thermoelectric Effect.
    Zhao W; Zhang F; Dai X; Jin W; Xiang L; Ding J; Wang X; Wan Y; Shen H; He Z; Wang J; Gao X; Zou Y; Di CA; Zhu D
    Adv Mater; 2020 Aug; 32(31):e2000273. PubMed ID: 32579297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations of thermoelectric performance by electric fields in bilayer MX
    Wang RN; Dong GY; Wang SF; Fu GS; Wang JL
    Phys Chem Chem Phys; 2017 Feb; 19(8):5797-5805. PubMed ID: 28176989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.