BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 27796304)

  • 41. Recognition of aminoacyl-tRNA: a common molecular mechanism revealed by cryo-EM.
    Li W; Agirrezabala X; Lei J; Bouakaz L; Brunelle JL; Ortiz-Meoz RF; Green R; Sanyal S; Ehrenberg M; Frank J
    EMBO J; 2008 Dec; 27(24):3322-31. PubMed ID: 19020518
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anisotropic Fluctuations in the Ribosome Determine tRNA Kinetics.
    Yang H; Noel JK; Whitford PC
    J Phys Chem B; 2017 Nov; 121(47):10593-10601. PubMed ID: 28910101
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The identification of the determinants of the cyclic, sequential binding of elongation factors tu and g to the ribosome.
    Yu H; Chan YL; Wool IG
    J Mol Biol; 2009 Feb; 386(3):802-13. PubMed ID: 19154738
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amino acid specificity in translation.
    Dale T; Uhlenbeck OC
    Trends Biochem Sci; 2005 Dec; 30(12):659-65. PubMed ID: 16260144
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Binding of tetracyclines to elongation factor Tu, the Tet repressor, and the ribosome: a molecular dynamics simulation study.
    Aleksandrov A; Simonson T
    Biochemistry; 2008 Dec; 47(51):13594-603. PubMed ID: 19032078
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Didemnin B and ternatin-4 differentially inhibit conformational changes in eEF1A required for aminoacyl-tRNA accommodation into mammalian ribosomes.
    Juette MF; Carelli JD; Rundlet EJ; Brown A; Shao S; Ferguson A; Wasserman MR; Holm M; Taunton J; Blanchard SC
    Elife; 2022 Oct; 11():. PubMed ID: 36264623
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ribosomal incorporation of negatively charged d-α- and
    Katoh T; Suga H
    Philos Trans R Soc Lond B Biol Sci; 2023 Feb; 378(1871):20220038. PubMed ID: 36633283
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Duplication of
    Sato A; Suematsu T; Aihara KK; Kita K; Suzuki T; Watanabe K; Ohtsuki T; Watanabe YI
    Biochem J; 2017 Mar; 474(6):957-969. PubMed ID: 28130490
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phenylalanyl-tRNA synthetase editing defects result in efficient mistranslation of phenylalanine codons as tyrosine.
    Ling J; Yadavalli SS; Ibba M
    RNA; 2007 Nov; 13(11):1881-6. PubMed ID: 17804641
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An A to U transversion at position 1067 of 23 S rRNA from Escherichia coli impairs EF-Tu and EF-G function.
    Saarma U; Remme J; Ehrenberg M; Bilgin N
    J Mol Biol; 1997 Sep; 272(3):327-35. PubMed ID: 9325093
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural elements defining elongation factor Tu mediated suppression of codon ambiguity.
    Roy H; Becker HD; Mazauric MH; Kern D
    Nucleic Acids Res; 2007; 35(10):3420-30. PubMed ID: 17478519
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process.
    Valle M; Sengupta J; Swami NK; Grassucci RA; Burkhardt N; Nierhaus KH; Agrawal RK; Frank J
    EMBO J; 2002 Jul; 21(13):3557-67. PubMed ID: 12093756
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetics of d-Amino Acid Incorporation in Translation.
    Liljeruhm J; Wang J; Kwiatkowski M; Sabari S; Forster AC
    ACS Chem Biol; 2019 Feb; 14(2):204-213. PubMed ID: 30648860
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Reverse Side of a Coin: "Factor-Free" Ribosomal Protein Synthesis In Vitro is a Consequence of the In Vivo Proofreading Mechanism.
    Finkelstein AV
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31597374
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Converting structural information into an allosteric-energy-based picture for elongation factor Tu activation by the ribosome.
    Adamczyk AJ; Warshel A
    Proc Natl Acad Sci U S A; 2011 Jun; 108(24):9827-32. PubMed ID: 21617092
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Elongation Factor Tu Prevents Misediting of Gly-tRNA(Gly) Caused by the Design Behind the Chiral Proofreading Site of D-Aminoacyl-tRNA Deacylase.
    Routh SB; Pawar KI; Ahmad S; Singh S; Suma K; Kumar M; Kuncha SK; Yadav K; Kruparani SP; Sankaranarayanan R
    PLoS Biol; 2016 May; 14(5):e1002465. PubMed ID: 27224426
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Precise Steric Features Control Aminoacyl-tRNA Accommodation on the Ribosome.
    Wang Y; Wang A; Mohanty U; Whitford PC
    J Phys Chem B; 2022 Oct; 126(42):8447-8459. PubMed ID: 36251478
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Geometric alignment of aminoacyl-tRNA relative to catalytic centers of the ribosome underpins accurate mRNA decoding.
    Girodat D; Wieden HJ; Blanchard SC; Sanbonmatsu KY
    Nat Commun; 2023 Sep; 14(1):5582. PubMed ID: 37696823
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The influence of the concentrations of elongation factors and tRNAs on the dynamics and accuracy of protein biosynthesis.
    Pingoud A; Gast FU; Peters F
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):252-8. PubMed ID: 2207151
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Codon-dependent tRNA fluctuations monitored with fluorescence polarization.
    Mishra PP; Qureshi MT; Ren W; Lee TH
    Biophys J; 2010 Dec; 99(11):3849-58. PubMed ID: 21112310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.