These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 27796309)

  • 1. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30.
    Jia J; Seitz LC; Benck JD; Huo Y; Chen Y; Ng JW; Bilir T; Harris JS; Jaramillo TF
    Nat Commun; 2016 Oct; 7():13237. PubMed ID: 27796309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoupled Water Electrolysis Driven by 1 cm
    Lv F; Qin Z; Wu J; Pan L; Liu L; Chen Y; Zhao Y
    ChemSusChem; 2023 Jan; 16(1):e202201689. PubMed ID: 36279197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sixteen Percent Solar-to-Hydrogen Efficiency Using a Power-Matched Alkaline Electrolyzer and a High Concentrated Solar Cell: Effect of Operating Parameters.
    M Bashir S; Nadeem MA; Al-Oufi M; Al-Hakami M; Isimjan TT; Idriss H
    ACS Omega; 2020 May; 5(18):10510-10518. PubMed ID: 32426608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.
    Sivula K
    Chimia (Aarau); 2013; 67(3):155-61. PubMed ID: 23574955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost-Efficient Photovoltaic-Water Electrolysis over Ultrathin Nanosheets of Cobalt/Iron-Molybdenum Oxides for Potential Large-Scale Hydrogen Production.
    Yi X; Song L; Ouyang S; Wang N; Chen H; Wang J; Lv J; Ye J
    Small; 2021 Oct; 17(39):e2102222. PubMed ID: 34411433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Solar-to-Hydrogen Conversion Efficiency at pH 7 Based on a PV-EC Cell with an Oligomeric Molecular Anode.
    Shi Y; Hsieh TY; Hoque MA; Cambarau W; Narbey S; Gimbert-Suriñach C; Palomares E; Lanza M; Llobet A
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55856-55864. PubMed ID: 33258374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction.
    Varadhan P; Fu HC; Kao YC; Horng RH; He JH
    Nat Commun; 2019 Nov; 10(1):5282. PubMed ID: 31754117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode.
    Ma Y; Dong X; Wang Y; Xia Y
    Angew Chem Int Ed Engl; 2018 Mar; 57(11):2904-2908. PubMed ID: 29384260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Perovskite-Based Wireless Integrated Device Exceeding a Solar to Hydrogen Conversion Efficiency of 11.
    Park J; Lee J; Lee H; Im H; Moon S; Jeong CS; Yang W; Moon J
    Small; 2023 Jul; 19(27):e2300174. PubMed ID: 36965011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode.
    Ding C; Qin W; Wang N; Liu G; Wang Z; Yan P; Shi J; Li C
    Phys Chem Chem Phys; 2014 Aug; 16(29):15608-14. PubMed ID: 24956231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar water splitting for hydrogen production using Zn electrodes: a green and sustainable approach.
    Singh D; Singh I; Arya RK; Mishra V; Singh D; Alam S; Giri BS
    Environ Sci Pollut Res Int; 2024 Sep; ():. PubMed ID: 39235758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge.
    Kim JH; Hansora D; Sharma P; Jang JW; Lee JS
    Chem Soc Rev; 2019 Apr; 48(7):1908-1971. PubMed ID: 30855624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting.
    Zhou P; Navid IA; Ma Y; Xiao Y; Wang P; Ye Z; Zhou B; Sun K; Mi Z
    Nature; 2023 Jan; 613(7942):66-70. PubMed ID: 36600066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic solar hydrogen production from water on a 100-m
    Nishiyama H; Yamada T; Nakabayashi M; Maehara Y; Yamaguchi M; Kuromiya Y; Nagatsuma Y; Tokudome H; Akiyama S; Watanabe T; Narushima R; Okunaka S; Shibata N; Takata T; Hisatomi T; Domen K
    Nature; 2021 Oct; 598(7880):304-307. PubMed ID: 34433207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Floating Seawater Splitting Device Based on NiFeCrMo Metal Hydroxide Electrocatalyst and Perovskite/Silicon Tandem Solar Cells.
    Pan S; Li R; Wang J; Zhang Q; Wang M; Shi B; Wang P; Zhao Y; Zhang X
    ACS Nano; 2023 Mar; 17(5):4539-4550. PubMed ID: 36808966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water Splitting with Series-Connected Polymer Solar Cells.
    Esiner S; van Eersel H; van Pruissen GW; Turbiez M; Wienk MM; Janssen RA
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26972-26981. PubMed ID: 27643525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Efficient Hydrogen Production Using a Reformed Electrolysis System Driven by a Single Perovskite Solar Cell.
    Xiao X; Liu S; Huang D; Lv X; Li M; Jiang X; Tao L; Yu Z; Shao Y; Wang M; Shen Y
    ChemSusChem; 2019 Jan; 12(2):434-440. PubMed ID: 30520261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design Principle and Loss Engineering for Photovoltaic-Electrolysis Cell System.
    Chang WJ; Lee KH; Ha H; Jin K; Kim G; Hwang ST; Lee HM; Ahn SW; Yoon W; Seo H; Hong JS; Go YK; Ha JI; Nam KT
    ACS Omega; 2017 Mar; 2(3):1009-1018. PubMed ID: 31457482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 25.1% Efficient Stand-Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator.
    Chinello E; Modestino MA; Coulot L; Ackermann M; Gerlich F; Psaltis D; Moser C
    Glob Chall; 2017 Dec; 1(9):1700095. PubMed ID: 31565298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.