These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27796335)

  • 21. Novel 3D Liquid Cell Culture Method for Anchorage-independent Cell Growth, Cell Imaging and Automated Drug Screening.
    Abe-Fukasawa N; Otsuka K; Aihara A; Itasaki N; Nishino T
    Sci Rep; 2018 Feb; 8(1):3627. PubMed ID: 29483620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of the spheroid model complexity on drug response.
    Hoffmann OI; Ilmberger C; Magosch S; Joka M; Jauch KW; Mayer B
    J Biotechnol; 2015 Jul; 205():14-23. PubMed ID: 25746901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New method for the detection of reactive oxygen species in anti-tumoural activity of adriamycin: a comparison between hypoxic and normoxic cells.
    Rharass T; Vigo J; Salmon JM; Ribou AC
    Free Radic Res; 2008 Feb; 42(2):124-34. PubMed ID: 18297605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating Nanoparticles Penetration by a New Microfluidic Hydrogel-Based Approach.
    Goodarzi S; Lux F; Rivière C
    Methods Mol Biol; 2024; 2804():223-235. PubMed ID: 38753151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gradient-induced instability in tumour spheroids unveils the impact of microenvironmental nutrient changes.
    Ascione F; Ferraro R; Dogra P; Cristini V; Guido S; Caserta S
    Sci Rep; 2024 Sep; 14(1):20837. PubMed ID: 39242641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Avascular tumour growth dynamics and the constraints of protein binding for drug transportation.
    Kazmi N; Hossain MA; Phillips RM; Al-Mamun MA; Bass R
    J Theor Biol; 2012 Nov; 313():142-52. PubMed ID: 22974970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell cycle and apoptotic effects of SAHA are regulated by the cellular microenvironment in HCT116 multicellular tumour spheroids.
    Lobjois V; Frongia C; Jozan S; Truchet I; Valette A
    Eur J Cancer; 2009 Sep; 45(13):2402-11. PubMed ID: 19553104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model.
    Liu PF; Cao YW; Zhang SD; Zhao Y; Liu XG; Shi HQ; Hu KY; Zhu GQ; Ma B; Niu HT
    Oncotarget; 2015 Nov; 6(35):37695-705. PubMed ID: 26462177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies of anticancer drug cytotoxicity based on long-term HepG2 spheroid culture in a microfluidic system.
    Zuchowska A; Kwapiszewska K; Chudy M; Dybko A; Brzozka Z
    Electrophoresis; 2017 Apr; 38(8):1206-1216. PubMed ID: 28090668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endogenous and induced oxidative stress in multi-cellular tumour spheroids: implications for improving tumour therapy.
    Khaitan D; Dwarakanath BS
    Indian J Biochem Biophys; 2009 Feb; 46(1):16-24. PubMed ID: 19374249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A microfluidic platform for drug screening in a 3D cancer microenvironment.
    Pandya HJ; Dhingra K; Prabhakar D; Chandrasekar V; Natarajan SK; Vasan AS; Kulkarni A; Shafiee H
    Biosens Bioelectron; 2017 Aug; 94():632-642. PubMed ID: 28371753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acoustically-driven thread-based tuneable gradient generators.
    Ramesan S; Rezk AR; Cheng KW; Chan PP; Yeo LY
    Lab Chip; 2016 Aug; 16(15):2820-8. PubMed ID: 27334420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Digital microfluidics for automated hanging drop cell spheroid culture.
    Aijian AP; Garrell RL
    J Lab Autom; 2015 Jun; 20(3):283-95. PubMed ID: 25510471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extracellular matrix production by nucleus pulposus and bone marrow stem cells in response to altered oxygen and glucose microenvironments.
    Naqvi SM; Buckley CT
    J Anat; 2015 Dec; 227(6):757-66. PubMed ID: 25913845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and characterization of a human three-dimensional chondrosarcoma culture for in vitro drug testing.
    Voissiere A; Jouberton E; Maubert E; Degoul F; Peyrode C; Chezal JM; Miot-Noirault É
    PLoS One; 2017; 12(7):e0181340. PubMed ID: 28704566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In-situ measurement of cellular microenvironments in a microfluidic device.
    Lin Z; Cherng-Wen T; Roy P; Trau D
    Lab Chip; 2009 Jan; 9(2):257-62. PubMed ID: 19107282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening.
    Guo WM; Loh XJ; Tan EY; Loo JS; Ho VH
    Mol Pharm; 2014 Jul; 11(7):2182-9. PubMed ID: 24842574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer's disease.
    Park J; Lee BK; Jeong GS; Hyun JK; Lee CJ; Lee SH
    Lab Chip; 2015 Jan; 15(1):141-50. PubMed ID: 25317977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fibroblast-associated tumour microenvironment induces vascular structure-networked tumouroid.
    Lee SW; Kwak HS; Kang MH; Park YY; Jeong GS
    Sci Rep; 2018 Feb; 8(1):2365. PubMed ID: 29403007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment.
    Yoshii Y; Furukawa T; Waki A; Okuyama H; Inoue M; Itoh M; Zhang MR; Wakizaka H; Sogawa C; Kiyono Y; Yoshii H; Fujibayashi Y; Saga T
    Biomaterials; 2015 May; 51():278-289. PubMed ID: 25771018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.