These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27796378)

  • 1. A new sodiation-desodiation mechanism of the titania-based negative electrode for sodium-ion batteries.
    Ding C; Nohira T; Hagiwara R
    Phys Chem Chem Phys; 2016 Nov; 18(44):30770-30776. PubMed ID: 27796378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Behavior and Mechanism of Oxygen-Deficient Anatase TiO
    Wang W; Wu M; Han P; Liu Y; He L; Huang Q; Wang J; Yan W; Fu L; Wu Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3061-3069. PubMed ID: 30566318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative electrodes for Na-ion batteries.
    Dahbi M; Yabuuchi N; Kubota K; Tokiwa K; Komaba S
    Phys Chem Chem Phys; 2014 Aug; 16(29):15007-28. PubMed ID: 24894102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodiation and Desodiation via Helical Phosphorus Intermediates in High-Capacity Anodes for Sodium-Ion Batteries.
    Marbella LE; Evans ML; Groh MF; Nelson J; Griffith KJ; Morris AJ; Grey CP
    J Am Chem Soc; 2018 Jun; 140(25):7994-8004. PubMed ID: 29916704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Dimensional Yolk-Shell Sb@Ti-O-P Nanostructures as a High-Capacity and High-Rate Anode Material for Sodium Ion Batteries.
    Wang N; Bai Z; Qian Y; Yang J
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):447-454. PubMed ID: 27982561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance.
    Beuvier T; Richard-Plouet M; Mancini-Le Granvalet M; Brousse T; Crosnier O; Brohan L
    Inorg Chem; 2010 Sep; 49(18):8457-64. PubMed ID: 20722375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium-Ion Intercalation Mechanism in MXene Nanosheets.
    Kajiyama S; Szabova L; Sodeyama K; Iinuma H; Morita R; Gotoh K; Tateyama Y; Okubo M; Yamada A
    ACS Nano; 2016 Mar; 10(3):3334-41. PubMed ID: 26891421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte.
    Ganapathy S; van Eck ER; Kentgens AP; Mulder FM; Wagemaker M
    Chemistry; 2011 Dec; 17(52):14811-6. PubMed ID: 22120842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays.
    Fang HT; Liu M; Wang DW; Sun T; Guan DS; Li F; Zhou J; Sham TK; Cheng HM
    Nanotechnology; 2009 Jun; 20(22):225701. PubMed ID: 19436089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma-Induced Oxygen Vacancies in Urchin-Like Anatase Titania Coated by Carbon for Excellent Sodium-Ion Battery Anodes.
    Gan Q; He H; Zhao K; He Z; Liu S; Yang S
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7031-7042. PubMed ID: 29338183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Properties and Sodium-Storage Mechanism of Ag2 Mo2 O7 as the Anode Material for Sodium-Ion Batteries.
    Chen N; Gao Y; Zhang M; Meng X; Wang C; Wei Y; Du F; Chen G
    Chemistry; 2016 May; 22(21):7248-54. PubMed ID: 27061105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electrochemical investigation of rutile TiO2 microspheres anchored by nanoneedle clusters for sodium storage.
    Zhang Y; Pu X; Yang Y; Zhu Y; Hou H; Jing M; Yang X; Chen J; Ji X
    Phys Chem Chem Phys; 2015 Jun; 17(24):15764-70. PubMed ID: 26016643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy.
    Shimoyamada A; Yamamoto K; Yoshida R; Kato T; Iriyama Y; Hirayama T
    Microscopy (Oxf); 2015 Dec; 64(6):401-8. PubMed ID: 26337787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-mediated layer-by-layer synthesis of TiO₂(B)/anatase/carbon coating on nickel foam as negative electrode material for lithium-ion battery.
    Wang X; Yan Y; Hao B; Chen G
    ACS Appl Mater Interfaces; 2013 May; 5(9):3631-7. PubMed ID: 23597025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reaction mechanism of FeSb(2) as anode for sodium-ion batteries.
    Baggetto L; Hah HY; Johnson CE; Bridges CA; Johnson JA; Veith GM
    Phys Chem Chem Phys; 2014 May; 16(20):9538-45. PubMed ID: 24727860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An advanced MoS2 /carbon anode for high-performance sodium-ion batteries.
    Wang J; Luo C; Gao T; Langrock A; Mignerey AC; Wang C
    Small; 2015 Jan; 11(4):473-81. PubMed ID: 25256131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quick Activation of Nanoporous Anatase TiO
    Ling L; Bai Y; Li Y; Ni Q; Wang Z; Wu F; Wu C
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39432-39440. PubMed ID: 29064226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the Sodium Insertion/Extraction Mechanism in a Layered NaVO
    Ali G; Islam M; Jung HG; Nam KW; Chung KY
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18717-18725. PubMed ID: 29737832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nb-doped rutile TiO₂: a potential anode material for Na-ion battery.
    Usui H; Yoshioka S; Wasada K; Shimizu M; Sakaguchi H
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6567-73. PubMed ID: 25757057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.