These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 27796478)
1. Continuous and discrete SIR-models with spatial distributions. Paeng SH; Lee J J Math Biol; 2017 Jun; 74(7):1709-1727. PubMed ID: 27796478 [TBL] [Abstract][Full Text] [Related]
2. Some properties of a simple stochastic epidemic model of SIR type. Tuckwell HC; Williams RJ Math Biosci; 2007 Jul; 208(1):76-97. PubMed ID: 17173939 [TBL] [Abstract][Full Text] [Related]
3. Simple Approximations for Epidemics with Exponential and Fixed Infectious Periods. Fowler AC; Hollingsworth TD Bull Math Biol; 2015 Aug; 77(8):1539-55. PubMed ID: 26337289 [TBL] [Abstract][Full Text] [Related]
4. Stochastic SIR epidemics in a population with households and schools. Ouboter T; Meester R; Trapman P J Math Biol; 2016 Apr; 72(5):1177-93. PubMed ID: 26070348 [TBL] [Abstract][Full Text] [Related]
5. Discrete stochastic metapopulation model with arbitrarily distributed infectious period. Hernandez-Ceron N; Chavez-Casillas JA; Feng Z Math Biosci; 2015 Mar; 261():74-82. PubMed ID: 25550286 [TBL] [Abstract][Full Text] [Related]
6. Assessing inference of the basic reproduction number in an SIR model incorporating a growth-scaling parameter. Ganyani T; Faes C; Chowell G; Hens N Stat Med; 2018 Dec; 37(29):4490-4506. PubMed ID: 30117184 [TBL] [Abstract][Full Text] [Related]
7. Elementary proof of convergence to the mean-field model for the SIR process. Armbruster B; Beck E J Math Biol; 2017 Aug; 75(2):327-339. PubMed ID: 28004143 [TBL] [Abstract][Full Text] [Related]
8. Susceptible-infectious-recovered models revisited: from the individual level to the population level. Magal P; Ruan S Math Biosci; 2014 Apr; 250():26-40. PubMed ID: 24530806 [TBL] [Abstract][Full Text] [Related]
9. Estimating the within-household infection rate in emerging SIR epidemics among a community of households. Ball F; Shaw L J Math Biol; 2015 Dec; 71(6-7):1705-35. PubMed ID: 25820343 [TBL] [Abstract][Full Text] [Related]
10. A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase. Britton T; Juher D; Saldaña J Bull Math Biol; 2016 Dec; 78(12):2427-2454. PubMed ID: 27800576 [TBL] [Abstract][Full Text] [Related]
11. A Note on Observation Processes in Epidemic Models. Park SW; Bolker BM Bull Math Biol; 2020 Mar; 82(3):37. PubMed ID: 32146583 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of an ultra-discrete SIR epidemic model with time delay. Sekiguchi M; Ishiwata E; Nakata Y Math Biosci Eng; 2018 Jun; 15(3):653-666. PubMed ID: 30380324 [TBL] [Abstract][Full Text] [Related]
13. Analysis of a stochastic SIR epidemic on a random network incorporating household structure. Ball F; Sirl D; Trapman P Math Biosci; 2010 Apr; 224(2):53-73. PubMed ID: 20005881 [TBL] [Abstract][Full Text] [Related]
14. Who is the infector? Epidemic models with symptomatic and asymptomatic cases. Leung KY; Trapman P; Britton T Math Biosci; 2018 Jul; 301():190-198. PubMed ID: 29654792 [TBL] [Abstract][Full Text] [Related]
15. Probability of a disease outbreak in stochastic multipatch epidemic models. Lahodny GE; Allen LJ Bull Math Biol; 2013 Jul; 75(7):1157-80. PubMed ID: 23666483 [TBL] [Abstract][Full Text] [Related]
16. SIS Epidemic Propagation on Hypergraphs. Bodó Á; Katona GY; Simon PL Bull Math Biol; 2016 Apr; 78(4):713-735. PubMed ID: 27033348 [TBL] [Abstract][Full Text] [Related]
17. Edge-based epidemic spreading in degree-correlated complex networks. Wang Y; Ma J; Cao J; Li L J Theor Biol; 2018 Oct; 454():164-181. PubMed ID: 29885412 [TBL] [Abstract][Full Text] [Related]
18. An Edge-Based Model of SEIR Epidemics on Static Random Networks. Alota CP; Pilar-Arceo CPC; de Los Reyes V AA Bull Math Biol; 2020 Jul; 82(7):96. PubMed ID: 32676740 [TBL] [Abstract][Full Text] [Related]
19. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Zhu M; Guo X; Lin Z Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1565-1583. PubMed ID: 29161876 [TBL] [Abstract][Full Text] [Related]
20. An exact and implementable computation of the final outbreak size distribution under Erlang distributed infectious period. İşlier ZG; Güllü R; Hörmann W Math Biosci; 2020 Jul; 325():108363. PubMed ID: 32360771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]