BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 27796499)

  • 1. Underlying mechanisms of the JAK2V617F mutation in the pathogenesis of myeloproliferative neoplasms.
    Mullally A
    Pathologe; 2016 Nov; 37(Suppl 2):175-179. PubMed ID: 27796499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Development and Use of Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms.
    Hobbs GS; Rozelle S; Mullally A
    Hematol Oncol Clin North Am; 2017 Aug; 31(4):613-626. PubMed ID: 28673391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does JAK2V617F contribute to the pathogenesis of myeloproliferative neoplasms?
    Chen E; Mullally A
    Hematology Am Soc Hematol Educ Program; 2014 Dec; 2014(1):268-76. PubMed ID: 25696866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic basis of MPN: Beyond JAK2-V617F.
    Them NC; Kralovics R
    Curr Hematol Malig Rep; 2013 Dec; 8(4):299-306. PubMed ID: 24190690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular genetic tests for JAK2V617F, Exon12_JAK2 and MPLW515K/L are highly informative in the evaluation of patients suspected to have BCR-ABL1-negative myeloproliferative neoplasms.
    dos Santos MT; Mitne-Neto M; Miyashiro K; Chauffaille Mde L; Rizzatti EG
    J Clin Pathol; 2014 Feb; 67(2):176-8. PubMed ID: 23986553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JAK2/STAT5 Pathway Mutation Frequencies in South African BCR/ABL Negative MPN Patients.
    Shires KL; Rust AJ; Harryparsad R; Coburn JA; Gopie RE
    Hematol Oncol Stem Cell Ther; 2023 Apr; 16(3):291-302. PubMed ID: 37023224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of multiple anti-apoptotic BCL2 family proteins recapitulates the effects of JAK2 inhibitors in JAK2V617F driven myeloproliferative neoplasms.
    Takei H; Coelho-Silva JL; Tavares Leal C; Queiroz Arantes Rocha A; Mantello Bianco T; Welner RS; Mishima Y; Kobayashi IS; Mullally A; Lima K; Machado-Neto JA; Kobayashi SS; Lobo de Figueiredo-Pontes L
    Cancer Sci; 2022 Feb; 113(2):597-608. PubMed ID: 34808021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. JAK2 and MPL mutations in myeloproliferative neoplasms.
    Koppikar P; Levine RL
    Acta Haematol; 2008; 119(4):218-25. PubMed ID: 18566540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. JAK-STAT signaling in the therapeutic landscape of myeloproliferative neoplasms.
    O'Sullivan JM; Harrison CN
    Mol Cell Endocrinol; 2017 Aug; 451():71-79. PubMed ID: 28167129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Pathogenesis of Myeloproliferative Neoplasms.
    Rolles B; Mullally A
    Curr Hematol Malig Rep; 2022 Dec; 17(6):319-329. PubMed ID: 36336766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. JAK2 mutations and clinical practice in myeloproliferative neoplasms.
    Tefferi A
    Cancer J; 2007; 13(6):366-71. PubMed ID: 18032973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Not Available].
    Mosca M; Vertenoeil G; Toppaldoddi KR; Plo I; Vainchenker W
    Bull Cancer; 2016 Jun; 103(6 Suppl 1):S16-28. PubMed ID: 27494969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coexisting JAK2V617F and CALR Exon 9 Mutations in Myeloproliferative Neoplasms - Do They Designate a New Subtype?
    Ahmed RZ; Rashid M; Ahmed N; Nadeem M; Shamsi TS
    Asian Pac J Cancer Prev; 2016; 17(3):923-6. PubMed ID: 27039813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The saga of JAK2 mutations and translocations in hematologic disorders: pathogenesis, diagnostic and therapeutic prospects, and revised World Health Organization diagnostic criteria for myeloproliferative neoplasms.
    Smith CA; Fan G
    Hum Pathol; 2008 Jun; 39(6):795-810. PubMed ID: 18538168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of JAK2V617F mutation load by droplet digital PCR can aid in diagnosis of myeloproliferative neoplasms.
    Zheng CF; Zhao XX; Chen XH; Liu Z; Wang WJ; Luo M; Ren Y; Wang HW
    Int J Lab Hematol; 2021 Aug; 43(4):645-650. PubMed ID: 33973741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A primer on genomic and epigenomic alterations in the myeloproliferative neoplasms.
    Rampal R; Levine RL
    Best Pract Res Clin Haematol; 2014 Jun; 27(2):83-93. PubMed ID: 25189720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. JAK-mutant myeloproliferative neoplasms.
    Levine RL
    Curr Top Microbiol Immunol; 2012; 355():119-33. PubMed ID: 21823028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. JAK2(V617F) allele burden ⩾50% is associated with response to ruxolitinib in persons with MPN-associated myelofibrosis and splenomegaly requiring therapy.
    Barosi G; Klersy C; Villani L; Bonetti E; Catarsi P; Poletto V; Campanelli R; Impera S; Latagliata R; Viarengo G; Carolei A; Massa M; Musso M; Crescimanno A; Gale RP; Rosti V
    Leukemia; 2016 Aug; 30(8):1772-5. PubMed ID: 26975727
    [No Abstract]   [Full Text] [Related]  

  • 19. [Research progress on molecular pathogenesis of myeloproliferative neoplasms].
    Liu L; Xiao ZJ
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2011 Feb; 19(1):239-43. PubMed ID: 21362261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical Manifestations and Risk Factors for Complications of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms.
    Duangnapasatit B; Rattarittamrong E; Rattanathammethee T; Hantrakool S; Chai-Adisaksopha C; Tantiworawit A; Norasetthada L
    Asian Pac J Cancer Prev; 2015; 16(12):5013-8. PubMed ID: 26163633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.