BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 27796631)

  • 1. "Turn-Off-On" Fluorescence Switching of Ascorbic Acid-Reductive Silver Nanoclusters: a Sensor for Ascorbic Acid and Arginine in Biological Fluids.
    Li N; He Y; Ge Y; Song G
    J Fluoresc; 2017 Jan; 27(1):293-302. PubMed ID: 27796631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical ascorbic acid sensor based on the fluorescence quenching of silver nanoparticles.
    Park HW; Alam SM; Lee SH; Karim MM; Wabaidur SM; Kang M; Choi JH
    Luminescence; 2009; 24(6):367-71. PubMed ID: 19424962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel fluorescent probe for ascorbic acid based on seed-mediated growth of silver nanoparticles quenching of carbon dots fluorescence.
    Liu J; Wang L; Bao H
    Anal Bioanal Chem; 2019 Feb; 411(4):877-883. PubMed ID: 30483855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turn-on fluorescence detection of cysteine with glutathione protected silver nanoclusters.
    Cao N; Zhou H; Tan H; Qi R; Chen J; Zhang S; Xu J
    Methods Appl Fluoresc; 2019 Jun; 7(3):034004. PubMed ID: 31174198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel switchable fluorescent sensor for facile and highly sensitive detection of alkaline phosphatase activity in a water environment with gold/silver nanoclusters.
    Wang X; Liu Z; Zhao W; Sun J; Qian B; Wang X; Zeng H; Du D; Duan J
    Anal Bioanal Chem; 2019 Feb; 411(5):1009-1017. PubMed ID: 30552495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ascorbic acid sensor based on protein-modified Au nanoclusters.
    Wang X; Wu P; Hou X; Lv Y
    Analyst; 2013 Jan; 138(1):229-33. PubMed ID: 23108453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent sensing of ascorbic acid based on iodine induced oxidative etching and aggregation of lysozyme-templated silver nanoclusters.
    Mo Q; Liu F; Gao J; Zhao M; Shao N
    Anal Chim Acta; 2018 Mar; 1003():49-55. PubMed ID: 29317029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly selective sensor of cysteine with tunable sensitivity and detection window based on dual-emission Ag nanoclusters.
    Zhu J; Song X; Gao L; Li Z; Liu Z; Ding S; Zou S; He Y
    Biosens Bioelectron; 2014 Mar; 53():71-5. PubMed ID: 24121225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fenton's reagent-tuned DNA-templated fluorescent silver nanoclusters as a versatile fluorescence probe and logic device.
    Zhang LP; Zhang XX; Hu B; Shen LM; Chen XW; Wang JH
    Analyst; 2012 Nov; 137(21):4974-80. PubMed ID: 22968007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dually emitting gold-silver nanoclusters as viable ratiometric fluorescent probes for cysteine and arginine.
    Liu M; Li N; He Y; Ge Y; Song G
    Mikrochim Acta; 2018 Jan; 185(2):147. PubMed ID: 29594587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dual-model strategy for fluorometric determination of ascorbic acid and of ascorbic acid oxidase activity by using DNA-templated gold-silver nanoclusters.
    Liu S; Pang S
    Mikrochim Acta; 2018 Aug; 185(9):426. PubMed ID: 30136157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sensitive detection of ATP and ADA based on turn-on fluorescent copper/silver nanoclusters.
    Zhang B; Wei C
    Anal Bioanal Chem; 2020 Apr; 412(11):2529-2536. PubMed ID: 32043202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A label-free turn-on-off fluorescent sensor for the sensitive detection of cysteine via blocking the Ag
    Li Y; Deng Y; Zhou X; Hu J
    Talanta; 2018 Mar; 179():742-752. PubMed ID: 29310302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A facile carbon dots based fluorescent probe for ultrasensitive detection of ascorbic acid in biological fluids via non-oxidation reduction strategy.
    Kong W; Wu D; Li G; Chen X; Gong P; Sun Z; Chen G; Xia L; You J; Wu Y
    Talanta; 2017 Apr; 165():677-684. PubMed ID: 28153316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence Detection of p-Nitrophenol in Water Using Bovine Serum Albumin Capped ag Nanoclusters.
    Mao M; Deng C; He Y; Ge Y; Song G
    J Fluoresc; 2017 Jul; 27(4):1421-1426. PubMed ID: 28401411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turn-on fluorescence detection of ascorbic acid with gold nanolcusters.
    Meng H; Yang D; Tu Y; Yan J
    Talanta; 2017 Apr; 165():346-350. PubMed ID: 28153265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu(2+) modulated silver nanoclusters as an on-off-on fluorescence probe for the selective detection of L-histidine.
    Zheng X; Yao T; Zhu Y; Shi S
    Biosens Bioelectron; 2015 Apr; 66():103-8. PubMed ID: 25460889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A label-free DNA-templated silver nanocluster probe for fluorescence on-off detection of endonuclease activity and inhibition.
    Qian Y; Zhang Y; Lu L; Cai Y
    Biosens Bioelectron; 2014 Jan; 51():408-12. PubMed ID: 24001584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly sensitive and selective detection of Pb
    Zhang B; Wei C
    Talanta; 2018 May; 182():125-130. PubMed ID: 29501131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A facile synthesis of fluorescent silver nanoclusters with human ferritin as a synthetic and interfacing ligand.
    Lee IH; Ahn B; Lee JM; Lee CS; Jung Y
    Analyst; 2015 May; 140(10):3543-50. PubMed ID: 25848642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.