BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27796943)

  • 1. Modified DNA polymerases for PCR troubleshooting.
    Śpibida M; Krawczyk B; Olszewski M; Kur J
    J Appl Genet; 2017 Feb; 58(1):133-142. PubMed ID: 27796943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fusion of DNA-binding domain of Pyrococcus furiosus ligase with TaqStoffel DNA polymerase as a useful tool in PCR with difficult targets.
    Śpibida M; Krawczyk B; Zalewska-Piątek B; Piątek R; Wysocka M; Olszewski M
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):713-721. PubMed ID: 29103168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved PCR performance using mutant Tpa-S DNA polymerases from the hyperthermophilic archaeon Thermococcus pacificus.
    Ppyun H; Kim I; Cho SS; Seo KJ; Yoon K; Kwon ST
    J Biotechnol; 2012 Dec; 164(2):363-70. PubMed ID: 23395617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases.
    Hottin A; Marx A
    Acc Chem Res; 2016 Mar; 49(3):418-27. PubMed ID: 26947566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chimeric thermostable DNA polymerases with reverse transcriptase and attenuated 3'-5' exonuclease activity.
    Schönbrunner NJ; Fiss EH; Budker O; Stoffel S; Sigua CL; Gelfand DH; Myers TW
    Biochemistry; 2006 Oct; 45(42):12786-95. PubMed ID: 17042497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the processivity of a family B-type DNA polymerase of Thermococcus onnurineus and application to long PCR.
    Kim YJ; Lee HS; Kwon ST; Lee JH; Kang SG
    Biotechnol Lett; 2014 May; 36(5):985-92. PubMed ID: 24375236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergy between DNA polymerases increases polymerase chain reaction inhibitor tolerance in forensic DNA analysis.
    Hedman J; Nordgaard A; Dufva C; Rasmusson B; Ansell R; Rådström P
    Anal Biochem; 2010 Oct; 405(2):192-200. PubMed ID: 20599651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of N-terminally truncated DNA polymerase from Thermus thermophilus (delta Tth polymerase) to DNA sequencing and polymerase chain reactions: comparative study of delta Tth and wild-type Tth polymerases.
    Arakawa T; Jongsareejit B; Tatsumi Y; Tanaka K; Ikeda K; Komatsubara H; Inoue H; Kawakami B; Oka M; Emi S; Yomo T; Shima Y; Negoro S; Urabe I
    DNA Res; 1996 Apr; 3(2):87-92. PubMed ID: 8804860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved PCR-based method for site directed mutagenesis using megaprimers.
    Brøns-Poulsen J; Petersen NE; Hørder M; Kristiansen K
    Mol Cell Probes; 1998 Dec; 12(6):345-8. PubMed ID: 9843651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems.
    Terpe K
    Appl Microbiol Biotechnol; 2013 Dec; 97(24):10243-54. PubMed ID: 24177730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and enzymatic properties of a chimeric bacteriophage RB69 DNA polymerase and single-stranded DNA binding protein with increased processivity.
    Sun S; Geng L; Shamoo Y
    Proteins; 2006 Oct; 65(1):231-8. PubMed ID: 16881051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro.
    Wang Y; Prosen DE; Mei L; Sullivan JC; Finney M; Vander Horn PB
    Nucleic Acids Res; 2004; 32(3):1197-207. PubMed ID: 14973201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved thermostability and PCR efficiency of Thermococcus celericrescens DNA polymerase via site-directed mutagenesis.
    Kim KP; Cho SS; Lee KK; Youn MH; Kwon ST
    J Biotechnol; 2011 Sep; 155(2):156-63. PubMed ID: 21723333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PCR amplification, cloning, and sequencing of ancient DNA.
    Fulton TL; Stiller M
    Methods Mol Biol; 2012; 840():111-9. PubMed ID: 22237529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, expression, and PCR application of DNA polymerase from the hyperthermophilic archaeon, Thermococcus celer.
    Kim KP; Bae H; Kim IH; Kwon ST
    Biotechnol Lett; 2011 Feb; 33(2):339-46. PubMed ID: 20953664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of DNA polymerases with gold nanoparticles and their applications in hot-start PCR.
    Mi L; Wen Y; Pan D; Wang Y; Fan C; Hu J
    Small; 2009 Nov; 5(22):2597-600. PubMed ID: 19722185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-dependent DNA polymerases.
    Kucera RB; Nichols NM
    Curr Protoc Mol Biol; 2008 Oct; Chapter 3():Unit3.5. PubMed ID: 18972387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of DNA polymerases on quantitative PCR results using TaqMan probe format in the LightCycler instrument.
    Kreuzer KA; Bohn A; Lass U; Peters UR; Schmidt CA
    Mol Cell Probes; 2000 Apr; 14(2):57-60. PubMed ID: 10799265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fidelity and predominant mutations produced by deep vent wild-type and exonuclease-deficient DNA polymerases during in vitro DNA amplification.
    Huang H; Keohavong P
    DNA Cell Biol; 1996 Jul; 15(7):589-94. PubMed ID: 8756340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly conserved lysine residue in phi29 DNA polymerase is important for correct binding of the templating nucleotide during initiation of phi29 DNA replication.
    Truniger V; Lázaro JM; Blanco L; Salas M
    J Mol Biol; 2002 Apr; 318(1):83-96. PubMed ID: 12054770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.