These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27796987)

  • 21. Capping hazardous red mud using acidic soil with an embedded layer of zeolite for plant growth.
    Ma Y; Si C; Lin C
    Environ Technol; 2014; 35(17-20):2314-21. PubMed ID: 25145185
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental impact of toxic elements in red mud studied by fractionation and speciation procedures.
    Milačič R; Zuliani T; Ščančar J
    Sci Total Environ; 2012 Jun; 426():359-65. PubMed ID: 22542238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neutralization of red mud with pickling waste liquor using Taguchi's design of experimental methodology.
    Rai S; Wasewar KL; Lataye DH; Mishra RS; Puttewar SP; Chaddha MJ; Mahindiran P; Mukhopadhyay J
    Waste Manag Res; 2012 Sep; 30(9):922-30. PubMed ID: 22751850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Carbide Slag on Removal of Na
    Huang X; Zhang Q; Wang W; Pan J; Yang Y
    ACS Omega; 2022 Feb; 7(5):4101-4109. PubMed ID: 35155904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective recovery of vanadium and scandium by ion exchange with D201 and solvent extraction using P507 from hydrochloric acid leaching solution of red mud.
    Zhu X; Li W; Tang S; Zeng M; Bai P; Chen L
    Chemosphere; 2017 May; 175():365-372. PubMed ID: 28236706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Behavior of aluminum, arsenic, and vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater.
    Burke IT; Peacock CL; Lockwood CL; Stewart DI; Mortimer RJ; Ward MB; Renforth P; Gruiz K; Mayes WM
    Environ Sci Technol; 2013 Jun; 47(12):6527-35. PubMed ID: 23683000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterisation of Adobe and Mud-Straw for the Restoration and Rehabilitation of Persian Historical Adobe Buildings.
    Hejazi B; Luz C; Grüner F; Frick J; Garrecht H
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The red mud accident in ajka (hungary): plant toxicity and trace metal bioavailability in red mud contaminated soil.
    Ruyters S; Mertens J; Vassilieva E; Dehandschutter B; Poffijn A; Smolders E
    Environ Sci Technol; 2011 Feb; 45(4):1616-22. PubMed ID: 21204523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leaching characteristics of selected South African fly ashes: effect of pH on the release of major and trace species.
    Gitari WM; Fatoba OO; Petrik LF; Vadapalli VR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Feb; 44(2):206-20. PubMed ID: 19123102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulating red mud for the fabrication of cementitious material by analyzing the thermal evolution of hydrogarnets.
    Wang B; Wu J; Sun X; Jiang J; Yang Q; Li Q; Ye Z; Guo J; Wang X
    Environ Sci Pollut Res Int; 2023 May; 30(22):62993-63004. PubMed ID: 36952160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase Transformation Behavior of the Aluminosilicate Phase During High-Pressure Hydrothermal Reduction of High-Iron Red Mud.
    Wang X; Wang Y; Jin H; Li J; Wang X
    Bull Environ Contam Toxicol; 2022 Jul; 109(1):186-193. PubMed ID: 35381871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced heavy metal immobilization in soil by grinding with addition of nanometallic Ca/CaO dispersion mixture.
    Mallampati SR; Mitoma Y; Okuda T; Sakita S; Kakeda M
    Chemosphere; 2012 Oct; 89(6):717-23. PubMed ID: 22818089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation into the stabilization/solidification performance of Portland cement through cement clinker phases.
    Qiao XC; Poon CS; Cheeseman CR
    J Hazard Mater; 2007 Jan; 139(2):238-43. PubMed ID: 16839680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M; Hwang JS; Choi SI
    Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlled reduction of red mud waste to produce active systems for environmental applications: heterogeneous Fenton reaction and reduction of Cr(VI).
    Costa RC; Moura FC; Oliveira PE; Magalhães F; Ardisson JD; Lago RM
    Chemosphere; 2010 Feb; 78(9):1116-20. PubMed ID: 20060564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radiological restrictions of using red mud as building material additive.
    Gu H; Wang N; Liu S
    Waste Manag Res; 2012 Sep; 30(9):961-5. PubMed ID: 22751852
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure.
    Agatzini-Leonardou S; Oustadakis P; Tsakiridis PE; Markopoulos Ch
    J Hazard Mater; 2008 Sep; 157(2-3):579-86. PubMed ID: 18295399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphite oxide-supported CaO catalysts for transesterification of soybean oil with methanol.
    Zu Y; Tang J; Zhu W; Zhang M; Liu G; Liu Y; Zhang W; Jia M
    Bioresour Technol; 2011 Oct; 102(19):8939-44. PubMed ID: 21824767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Leaching of metals from fresh and sintered red mud.
    Ghosh I; Guha S; Balasubramaniam R; Kumar AV
    J Hazard Mater; 2011 Jan; 185(2-3):662-8. PubMed ID: 21035262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hematite (α-Fe
    Bolanz RM; Kiefer S; Göttlicher J; Steininger R
    Sci Total Environ; 2018 May; 622-623():849-860. PubMed ID: 29227935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.