BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27797146)

  • 1. Innovative Technologies in Nanomedicines: From Passive Targeting to Active Targeting/From Controlled Pharmacokinetics to Controlled Intracellular Pharmacokinetics.
    Sato Y; Sakurai Y; Kajimoto K; Nakamura T; Yamada Y; Akita H; Harashima H
    Macromol Biosci; 2017 Jan; 17(1):. PubMed ID: 27797146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a multifunctional envelope-type nano device and its application to nanomedicine.
    Sato Y; Nakamura T; Yamada Y; Harashima H
    J Control Release; 2016 Dec; 244(Pt B):194-204. PubMed ID: 27374187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional enveloped nanodevices (MENDs).
    Sato Y; Nakamura T; Yamada Y; Akita H; Harashima H
    Adv Genet; 2014; 88():139-204. PubMed ID: 25409606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multifunctional envelope-type nanodevice for use in nanomedicine: concept and applications.
    Nakamura T; Akita H; Yamada Y; Hatakeyama H; Harashima H
    Acc Chem Res; 2012 Jul; 45(7):1113-21. PubMed ID: 22324902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional envelope-type nano device for controlled intracellular trafficking and selective targeting in vivo.
    Kajimoto K; Sato Y; Nakamura T; Yamada Y; Harashima H
    J Control Release; 2014 Sep; 190():593-606. PubMed ID: 24794902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Innovative nanotechnologies for enhancing nucleic acids/gene therapy: Controlling intracellular trafficking to targeted biodistribution.
    Nakamura T; Yamada Y; Sato Y; Khalil IA; Harashima H
    Biomaterials; 2019 Oct; 218():119329. PubMed ID: 31306827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system.
    Sakurai Y; Hatakeyama H; Sato Y; Hyodo M; Akita H; Ohga N; Hida K; Harashima H
    J Control Release; 2014 Jan; 173():110-8. PubMed ID: 24120854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Programmed packaging" for gene delivery.
    Hyodo M; Sakurai Y; Akita H; Harashima H
    J Control Release; 2014 Nov; 193():316-23. PubMed ID: 24780263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional Envelope-Type Nano Device: Evolution from Nonselective to Active Targeting System.
    Hayashi Y; Hatakeyama H; Kajimoto K; Hyodo M; Akita H; Harashima H
    Bioconjug Chem; 2015 Jul; 26(7):1266-76. PubMed ID: 25938819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of drug delivery system from viewpoint of controlled intracellular trafficking and selective tissue targeting toward future nanomedicine.
    Yamada Y; Sato Y; Nakamura T; Harashima H
    J Control Release; 2020 Nov; 327():533-545. PubMed ID: 32916227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Packaging of Plasmid DNA Using a pH Sensitive Cationic Lipid for Delivery to Hepatocytes.
    Sakurai Y; Matsuda T; Hada T; Harashima H
    Biol Pharm Bull; 2015; 38(8):1185-91. PubMed ID: 26235581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-angiogenic nanotherapy via active targeting systems to tumors and adipose tissue vasculature.
    Sakurai Y; Kajimoto K; Harashima H
    Biomater Sci; 2015 Sep; 3(9):1253-65. PubMed ID: 26261854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development of the MITO-porter, a nano device for mitochondrial drug delivery via membrane fusion].
    Yamada Y
    Yakugaku Zasshi; 2014; 134(11):1143-55. PubMed ID: 25366911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MITO-Porter for Mitochondrial Delivery and Mitochondrial Functional Analysis.
    Yamada Y; Harashima H
    Handb Exp Pharmacol; 2017; 240():457-472. PubMed ID: 27830347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nanomedicine rush: New strategies for unmet medical needs based on innovative nano DDS.
    Sato Y; Nakamura T; Yamada Y; Harashima H
    J Control Release; 2021 Feb; 330():305-316. PubMed ID: 33358975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delivery of bioactive molecules to the mitochondrial genome using a membrane-fusing, liposome-based carrier, DF-MITO-Porter.
    Yamada Y; Harashima H
    Biomaterials; 2012 Feb; 33(5):1589-95. PubMed ID: 22105068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Innovative System for Delivering Nucleic Acids/Genes Based on Controlled Intracellular Trafficking as Well as Controlled Biodistribution for Nanomedicines.
    Harashima H
    Biol Pharm Bull; 2023; 46(12):1648-1660. PubMed ID: 38044089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNA to cancer cells.
    Dong DW; Xiang B; Gao W; Yang ZZ; Li JQ; Qi XR
    Biomaterials; 2013 Jul; 34(20):4849-59. PubMed ID: 23541420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial delivery of antisense RNA by MITO-Porter results in mitochondrial RNA knockdown, and has a functional impact on mitochondria.
    Furukawa R; Yamada Y; Kawamura E; Harashima H
    Biomaterials; 2015 Jul; 57():107-15. PubMed ID: 25913255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of doxorubicin efficacy using liposomal anti-polo-like kinase 1 siRNA in human renal cell carcinomas.
    Sakurai Y; Hatakeyama H; Akita H; Harashima H
    Mol Pharm; 2014 Aug; 11(8):2713-9. PubMed ID: 24800640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.