These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 27797388)
21. Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering. Lee WK; Ichi T; Ooya T; Yamamoto T; Katoh M; Yui N J Biomed Mater Res A; 2003 Dec; 67(4):1087-92. PubMed ID: 14624493 [TBL] [Abstract][Full Text] [Related]
22. Local and network structure of thermoreversible polyrotaxane hydrogels based on poly(ethylene glycol) and methylated alpha-cyclodextrins. Kataoka T; Kidowaki M; Zhao C; Minamikawa H; Shimizu T; Ito K J Phys Chem B; 2006 Dec; 110(48):24377-83. PubMed ID: 17134190 [TBL] [Abstract][Full Text] [Related]
23. Preparation of porous hydrolyzable polyrotaxane hydrogels and their erosion behavior. Ichi T; Nitta K; Lee WK; Ooya T; Yui N J Biomater Sci Polym Ed; 2003; 14(6):567-79. PubMed ID: 12901438 [TBL] [Abstract][Full Text] [Related]
24. Supramolecular inclusion-based molecular integral rigidity: a feasible strategy for controlling the structural connectivity of uranyl polyrotaxane networks. Mei L; Wang L; Yuan LY; An SW; Zhao YL; Chai ZF; Burns PC; Shi WQ Chem Commun (Camb); 2015 Aug; 51(60):11990-3. PubMed ID: 26121567 [TBL] [Abstract][Full Text] [Related]
25. Formation of Polyrotaxane Particles via Template Assembly. Tardy BL; Tan S; Dam HH; Suma T; Guo J; Qiao GG; Caruso F Biomacromolecules; 2017 Jul; 18(7):2118-2127. PubMed ID: 28617594 [TBL] [Abstract][Full Text] [Related]
26. Polyrotaxane-based biointerfaces with dynamic biomaterial functions. Arisaka Y; Yui N J Mater Chem B; 2019 Apr; 7(13):2123-2129. PubMed ID: 32073570 [TBL] [Abstract][Full Text] [Related]
27. Platelet responses to dynamic biomaterial surfaces with different poly(ethylene glycol) and polyrotaxane molecular architectures constructed on gold substrates. Kakinoki S; Yui N; Yamaoka T J Biomater Appl; 2013 Nov; 28(4):544-51. PubMed ID: 23048065 [TBL] [Abstract][Full Text] [Related]
28. Influence of Molecular Structure on the In Vivo Performance of Flexible Rod Polyrotaxanes. Collins CJ; Mondjinou Y; Loren B; Torregrosa-Allen S; Simmons CJ; Elzey BD; Ayat N; Lu ZR; Thompson D Biomacromolecules; 2016 Sep; 17(9):2777-86. PubMed ID: 27387820 [TBL] [Abstract][Full Text] [Related]
29. Gd3+-1,4,7,10-Tetraazacyclododecane-1,4,7-triacetic-2-hydroxypropyl-β-cyclodextrin/Pluronic Polyrotaxane as a Long Circulating High Relaxivity MRI Contrast Agent. Zhou Z; Mondjinou Y; Hyun SH; Kulkarni A; Lu ZR; Thompson DH ACS Appl Mater Interfaces; 2015 Oct; 7(40):22272-6. PubMed ID: 26417911 [TBL] [Abstract][Full Text] [Related]
30. Thermoresponsive behavior of cationic polyrotaxane composed of multiple pentaethylenehexamine-grafted alpha-cyclodextrins threaded on poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymer. Yang C; Li J J Phys Chem B; 2009 Jan; 113(3):682-90. PubMed ID: 19143572 [TBL] [Abstract][Full Text] [Related]
31. Preparation of alpha-cyclodextrin-terminated polyrotaxane consisting of beta-cyclodextrins and pluronic as a building block of a biodegradable network. Ooya T; Ito A; Yui N Macromol Biosci; 2005 May; 5(5):379-83. PubMed ID: 15895475 [TBL] [Abstract][Full Text] [Related]
32. Structural Reorganization and Fibrinogen Adsorption Behaviors on the Polyrotaxane Surfaces Investigated by Sum Frequency Generation Spectroscopy. Ge A; Seo JH; Qiao L; Yui N; Ye S ACS Appl Mater Interfaces; 2015 Oct; 7(40):22709-18. PubMed ID: 26393413 [TBL] [Abstract][Full Text] [Related]
33. Multilayer films with nanocontainers: redox-controlled reversible encapsulation of guest molecules. Zhang J; Liu Y; Yuan B; Wang Z; Schönhoff M; Zhang X Chemistry; 2012 Nov; 18(47):14968-73. PubMed ID: 23112102 [TBL] [Abstract][Full Text] [Related]
34. Formation and degradation of layer-by-layer-assembled polyelectrolyte polyrotaxane capsules. Dam HH; Caruso F Langmuir; 2013 Jun; 29(24):7203-8. PubMed ID: 23368764 [TBL] [Abstract][Full Text] [Related]
37. The effect of molecular mobility of supramolecular polymer surfaces on fibroblast adhesion. Seo JH; Yui N Biomaterials; 2013 Jan; 34(1):55-63. PubMed ID: 23079667 [TBL] [Abstract][Full Text] [Related]
38. Architectures and DFT calculations of polyrotaxane MOFs with nanoscale macrocycles. Zhang MD; Zheng BH; Chen L; Chen MD; Tao T; Chen K; Cao H Dalton Trans; 2016 Feb; 45(8):3334-9. PubMed ID: 26785926 [TBL] [Abstract][Full Text] [Related]
39. Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril. Liu Y; Ke CF; Zhang HY; Wu WJ; Shi J J Org Chem; 2007 Jan; 72(1):280-3. PubMed ID: 17194112 [TBL] [Abstract][Full Text] [Related]
40. Synthesis, characterization and in vitro evaluation of a series of novel polyrotaxane-based delivery system for artesunate. Gong XS; Jiang RJ; Liao XL; Xie HD; Ma X; Gao CZ; Yang B; Zhao YL Carbohydr Res; 2015 Aug; 412():7-14. PubMed ID: 25988495 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]