BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 27797431)

  • 21. A glutathione-independent DJ-1/PfpI domain-containing tomato glyoxalaseIII2, SlGLYIII2, confers enhanced tolerance under salt and osmotic stresses.
    Gambhir P; Singh V; Raghuvanshi U; Parida AP; Pareek A; Roychowdhury A; Sopory SK; Kumar R; Sharma AK
    Plant Cell Environ; 2023 Feb; 46(2):518-548. PubMed ID: 36377315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool.
    Ghosh A; Pareek A; Sopory SK; Singla-Pareek SL
    Plant J; 2014 Oct; 80(1):93-105. PubMed ID: 25039836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione.
    Yadav SK; Singla-Pareek SL; Ray M; Reddy MK; Sopory SK
    Biochem Biophys Res Commun; 2005 Nov; 337(1):61-7. PubMed ID: 16176800
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An overview on the role of methylglyoxal and glyoxalases in plants.
    Yadav SK; Singla-Pareek SL; Sopory SK
    Drug Metabol Drug Interact; 2008; 23(1-2):51-68. PubMed ID: 18533364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glyoxalase I-4 functions downstream of NAC72 to modulate downy mildew resistance in grapevine.
    Li T; Cheng X; Wang X; Li G; Wang B; Wang W; Zhang N; Han Y; Jiao B; Wang Y; Liu G; Xu T; Xu Y
    Plant J; 2021 Oct; 108(2):394-410. PubMed ID: 34318550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional characterization of the Glyoxalase-I (
    Jana GA; Yaish MW
    Plant Signal Behav; 2020 Nov; 15(11):1811527. PubMed ID: 32835595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methylglyoxal detoxifying gene families in tomato: Genome-wide identification, evolution, functional prediction, and transcript profiling.
    Masum AA; Arman MS; Ghosh A
    PLoS One; 2024; 19(6):e0304039. PubMed ID: 38865327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of glyoxalase pathway for enhancing stress tolerance in plants.
    Mustafiz A; Sahoo KK; Singla-Pareek SL; Sopory SK
    Methods Mol Biol; 2010; 639():95-118. PubMed ID: 20387042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silicon-mediated metabolic upregulation of ascorbate glutathione (AsA-GSH) and glyoxalase reduces the toxic effects of vanadium in rice.
    Altaf MM; Diao XP; Altaf MA; Ur Rehman A; Shakoor A; Khan LU; Jan BL; Ahmad P
    J Hazard Mater; 2022 Aug; 436():129145. PubMed ID: 35739696
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice.
    Park HC; Kim H; Koo SC; Park HJ; Cheong MS; Hong H; Baek D; Chung WS; Kim DH; Bressan RA; Lee SY; Bohnert HJ; Yun DJ
    Plant Cell Environ; 2010 Nov; 33(11):1923-34. PubMed ID: 20561251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methylglyoxal induces inhibition of growth, accumulation of anthocyanin, and activation of glyoxalase I and II in Arabidopsis thaliana.
    Hoque TS; Uraji M; Hoque MA; Nakamura Y; Murata Y
    J Biochem Mol Toxicol; 2017 Jul; 31(7):. PubMed ID: 28117932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of AKR4C15, a Novel Member of Aldo-Keto Reductase, in Comparison with Other Rice AKR(s).
    Auiyawong B; Narawongsanont R; Tantitadapitak C
    Protein J; 2017 Aug; 36(4):257-269. PubMed ID: 28699078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. POLYAMINE OXIDASE 1 from rice (Oryza sativa) is a functional ortholog of Arabidopsis POLYAMINE OXIDASE 5.
    Liu T; Wook Kim D; Niitsu M; Berberich T; Kusano T
    Plant Signal Behav; 2014; 9(9):e29773. PubMed ID: 25763711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glyoxalases and stress tolerance in plants.
    Kaur C; Ghosh A; Pareek A; Sopory SK; Singla-Pareek SL
    Biochem Soc Trans; 2014 Apr; 42(2):485-90. PubMed ID: 24646265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analysis of glyoxalase pathway genes in Erianthus arundinaceus and commercial sugarcane hybrid under salinity and drought conditions.
    Manoj VM; Anunanthini P; Swathik PC; Dharshini S; Ashwin Narayan J; Manickavasagam M; Sathishkumar R; Suresha GS; Hemaprabha G; Ram B; Appunu C
    BMC Genomics; 2019 Apr; 19(Suppl 9):986. PubMed ID: 30999852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proline-mediated activation of glyoxalase II improve methylglyoxal detoxification in Oryza sativa L. under chromium injury: Clarification via vector analysis of enzymatic activities and gene expression.
    Pan X; Ullah A; Feng YX; Tian P; Yu XZ
    Plant Physiol Biochem; 2023 Aug; 201():107867. PubMed ID: 37393860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses.
    Mustafiz A; Singh AK; Pareek A; Sopory SK; Singla-Pareek SL
    Funct Integr Genomics; 2011 Jun; 11(2):293-305. PubMed ID: 21213008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The formation of argpyrimidine, a methylglyoxal-arginine adduct, in the nucleus of neural cells.
    Nakadate Y; Uchida K; Shikata K; Yoshimura S; Azuma M; Hirata T; Konishi H; Kiyama H; Tachibana T
    Biochem Biophys Res Commun; 2009 Jan; 378(2):209-12. PubMed ID: 19014907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glyoxalase I activity affects Arabidopsis sensitivity to ammonium nutrition.
    Borysiuk K; Ostaszewska-Bugajska M; Kryzheuskaya K; Gardeström P; Szal B
    Plant Cell Rep; 2022 Dec; 41(12):2393-2413. PubMed ID: 36242617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial glyoxalase enzymes: metalloenzymes controlling cellular levels of methylglyoxal.
    Sukdeo N; Honek JF
    Drug Metabol Drug Interact; 2008; 23(1-2):29-50. PubMed ID: 18533363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.