These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 27797487)

  • 1. Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits.
    Yu CJ; Graham MJ; Zadrozny JM; Niklas J; Krzyaniak MD; Wasielewski MR; Poluektov OG; Freedman DE
    J Am Chem Soc; 2016 Nov; 138(44):14678-14685. PubMed ID: 27797487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit.
    Zadrozny JM; Niklas J; Poluektov OG; Freedman DE
    ACS Cent Sci; 2015 Dec; 1(9):488-92. PubMed ID: 27163013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic Approach To Determine the Effect of Nuclear Spin Distance on Electronic Spin Decoherence.
    Graham MJ; Yu CJ; Krzyaniak MD; Wasielewski MR; Freedman DE
    J Am Chem Soc; 2017 Mar; 139(8):3196-3201. PubMed ID: 28145700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes.
    Graham MJ; Krzyaniak MD; Wasielewski MR; Freedman DE
    Inorg Chem; 2017 Jul; 56(14):8106-8113. PubMed ID: 28657714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Qubit Control Limited by Spin-Lattice Relaxation in a Nuclear Spin-Free Iron(III) Complex.
    Zadrozny JM; Freedman DE
    Inorg Chem; 2015 Dec; 54(24):12027-31. PubMed ID: 26650962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety.
    Atzori M; Morra E; Tesi L; Albino A; Chiesa M; Sorace L; Sessoli R
    J Am Chem Soc; 2016 Sep; 138(35):11234-44. PubMed ID: 27517709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits.
    Tesi L; Lucaccini E; Cimatti I; Perfetti M; Mannini M; Atzori M; Morra E; Chiesa M; Caneschi A; Sorace L; Sessoli R
    Chem Sci; 2016 Mar; 7(3):2074-2083. PubMed ID: 29899933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple quantum coherences from hyperfine transitions in a vanadium(IV) complex.
    Zadrozny JM; Niklas J; Poluektov OG; Freedman DE
    J Am Chem Soc; 2014 Nov; 136(45):15841-4. PubMed ID: 25340518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic Spin Qubit Candidates Arrayed within Layered Two-Dimensional Polymers.
    Oanta AK; Collins KA; Evans AM; Pratik SM; Hall LA; Strauss MJ; Marder SR; D'Alessandro DM; Rajh T; Freedman DE; Li H; Brédas JL; Sun L; Dichtel WR
    J Am Chem Soc; 2023 Jan; 145(1):689-696. PubMed ID: 36574726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-ligand covalency enables room temperature molecular qubit candidates.
    Fataftah MS; Krzyaniak MD; Vlaisavljevich B; Wasielewski MR; Zadrozny JM; Freedman DE
    Chem Sci; 2019 Jul; 10(27):6707-6714. PubMed ID: 31367325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling Up Electronic Spin Qubits into a Three-Dimensional Metal-Organic Framework.
    Yamabayashi T; Atzori M; Tesi L; Cosquer G; Santanni F; Boulon ME; Morra E; Benci S; Torre R; Chiesa M; Sorace L; Sessoli R; Yamashita M
    J Am Chem Soc; 2018 Sep; 140(38):12090-12101. PubMed ID: 30145887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits.
    Atzori M; Tesi L; Morra E; Chiesa M; Sorace L; Sessoli R
    J Am Chem Soc; 2016 Feb; 138(7):2154-7. PubMed ID: 26853512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular qubits based on potentially nuclear-spin-free nickel ions.
    Bader K; Schlindwein SH; Gudat D; van Slageren J
    Phys Chem Chem Phys; 2017 Jan; 19(3):2525-2529. PubMed ID: 28058424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-qubit molecular architecture for electron-mediated nuclear quantum simulation.
    Atzori M; Chiesa A; Morra E; Chiesa M; Sorace L; Carretta S; Sessoli R
    Chem Sci; 2018 Aug; 9(29):6183-6192. PubMed ID: 30090305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of electronic spin and spin-orbit coupling on decoherence in mononuclear transition metal complexes.
    Graham MJ; Zadrozny JM; Shiddiq M; Anderson JS; Fataftah MS; Hill S; Freedman DE
    J Am Chem Soc; 2014 May; 136(21):7623-6. PubMed ID: 24836983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand Radicals as Modular Organic Electron Spin Qubits.
    McGuire J; Miras HN; Donahue JP; Richards E; Sproules S
    Chemistry; 2018 Nov; 24(66):17598-17605. PubMed ID: 30291646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum spin coherence and electron spin distribution channels in vanadyl-containing lantern complexes.
    Imperato M; Nicolini A; Borsari M; Briganti M; Chiesa M; Liao YK; Ranieri A; Raza A; Salvadori E; Sorace L; Cornia A
    Inorg Chem Front; 2023 Dec; 11(1):186-195. PubMed ID: 38221947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Effects on the Spin Dynamics of Potential Molecular Qubits.
    Atzori M; Benci S; Morra E; Tesi L; Chiesa M; Torre R; Sorace L; Sessoli R
    Inorg Chem; 2018 Jan; 57(2):731-740. PubMed ID: 29280628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mononuclear transition metal single-molecule magnet in a nuclear spin-free ligand environment.
    Fataftah MS; Zadrozny JM; Rogers DM; Freedman DE
    Inorg Chem; 2014 Oct; 53(19):10716-21. PubMed ID: 25198379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Employing Forbidden Transitions as Qubits in a Nuclear Spin-Free Chromium Complex.
    Fataftah MS; Zadrozny JM; Coste SC; Graham MJ; Rogers DM; Freedman DE
    J Am Chem Soc; 2016 Feb; 138(4):1344-8. PubMed ID: 26739626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.