These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 27797533)
41. Environmental media exert a bottleneck in driving the dynamics of antibiotic resistance genes in modern aquatic environment. Chen Y; Li P; Huang Y; Yu K; Chen H; Cui K; Huang Q; Zhang J; Yew-Hoong Gin K; He Y Water Res; 2019 Oct; 162():127-138. PubMed ID: 31260828 [TBL] [Abstract][Full Text] [Related]
42. Heavy metal could drive co-selection of antibiotic resistance in terrestrial subsurface soils. Wang X; Lan B; Fei H; Wang S; Zhu G J Hazard Mater; 2021 Jun; 411():124848. PubMed ID: 33858075 [TBL] [Abstract][Full Text] [Related]
43. Turning pig manure into biochar can effectively mitigate antibiotic resistance genes as organic fertilizer. Zhou X; Qiao M; Su JQ; Wang Y; Cao ZH; Cheng WD; Zhu YG Sci Total Environ; 2019 Feb; 649():902-908. PubMed ID: 30179818 [TBL] [Abstract][Full Text] [Related]
44. Antibiotic resistome alteration along a full-scale drinking water supply system deciphered by metagenome assembly: Regulated by seasonality, mobile gene elements and antibiotic resistant gene hosts. Ke Y; Sun W; Jing Z; Zhu Y; Zhao Z; Xie S Sci Total Environ; 2023 Mar; 862():160887. PubMed ID: 36521611 [TBL] [Abstract][Full Text] [Related]
45. Distribution of ARGs and MGEs among glacial soil, permafrost, and sediment using metagenomic analysis. Zhang S; Yang G; Hou S; Zhang T; Li Z; Liang F Environ Pollut; 2018 Mar; 234():339-346. PubMed ID: 29195175 [TBL] [Abstract][Full Text] [Related]
46. Effects of biofertilizer on soil microbial diversity and antibiotic resistance genes. Yang LY; Zhou SY; Lin CS; Huang XR; Neilson R; Yang XR Sci Total Environ; 2022 May; 820():153170. PubMed ID: 35051473 [TBL] [Abstract][Full Text] [Related]
47. Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas. Szekeres E; Chiriac CM; Baricz A; Szőke-Nagy T; Lung I; Soran ML; Rudi K; Dragos N; Coman C Environ Pollut; 2018 May; 236():734-744. PubMed ID: 29454283 [TBL] [Abstract][Full Text] [Related]
48. Large-scale patterns of soil antibiotic resistome in Chinese croplands. Du S; Shen JP; Hu HW; Wang JT; Han LL; Sheng R; Wei WX; Fang YT; Zhu YG; Zhang LM; He JZ Sci Total Environ; 2020 Apr; 712():136418. PubMed ID: 31927444 [TBL] [Abstract][Full Text] [Related]
49. [Pollution Characteristics and Driving Factors of Antibiotic Resistance Genes in Dexing Copper Mine]. Han L; Lou Q; Qiao M; Liu MT; Zhong JY; Ding HJ Huan Jing Ke Xue; 2022 Feb; 43(2):1089-1096. PubMed ID: 35075883 [TBL] [Abstract][Full Text] [Related]
50. Rainfall facilitates the transmission and proliferation of antibiotic resistance genes from ambient air to soil. Wang Q; Guo S; Hou Z; Lin H; Liang H; Wang L; Luo Y; Ren H Sci Total Environ; 2021 Dec; 799():149260. PubMed ID: 34352459 [TBL] [Abstract][Full Text] [Related]
51. Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Su JQ; Wei B; Ou-Yang WY; Huang FY; Zhao Y; Xu HJ; Zhu YG Environ Sci Technol; 2015 Jun; 49(12):7356-63. PubMed ID: 26018772 [TBL] [Abstract][Full Text] [Related]
52. The changes in antibiotic resistance genes during 86 years of the soil ripening process without anthropogenic activities. Tang X; Shen M; Zhang Y; Zhu D; Wang H; Zhao Y; Kang Y Chemosphere; 2021 Mar; 266():128985. PubMed ID: 33228990 [TBL] [Abstract][Full Text] [Related]
53. Responses of soil antibiotic resistance genes to the decrease in grain size of sediment discharged into Dongting Lake, China. Wu H; Xu G; Yang R; Dai J; Al-Dhabi NA; Wang G; Zhou L; Tang W Sci Total Environ; 2024 Nov; 953():176091. PubMed ID: 39244058 [TBL] [Abstract][Full Text] [Related]
54. The composition of antibiotic resistance genes is not affected by grazing but is determined by microorganisms in grassland soils. Zheng Z; Li L; Makhalanyane TP; Xu C; Li K; Xue K; Xu C; Qian R; Zhang B; Du J; Yu H; Cui X; Wang Y; Hao Y Sci Total Environ; 2021 Mar; 761():143205. PubMed ID: 33187698 [TBL] [Abstract][Full Text] [Related]
55. Large-scale biogeographical patterns of antibiotic resistome in the forest soils across China. Song M; Song D; Jiang L; Zhang D; Sun Y; Chen G; Xu H; Mei W; Li Y; Luo C; Zhang G J Hazard Mater; 2021 Feb; 403():123990. PubMed ID: 33265028 [TBL] [Abstract][Full Text] [Related]
56. High-throughput profiling of antibiotic resistance gene dynamic in a drinking water river-reservoir system. Chen Y; Su JQ; Zhang J; Li P; Chen H; Zhang B; Gin KY; He Y Water Res; 2019 Feb; 149():179-189. PubMed ID: 30447523 [TBL] [Abstract][Full Text] [Related]
57. Plant cultivar determined bacterial community and potential risk of antibiotic resistance gene spread in the phyllosphere. Fan X; Su J; Zhou S; An X; Li H J Environ Sci (China); 2023 May; 127():508-518. PubMed ID: 36522081 [TBL] [Abstract][Full Text] [Related]
58. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes. Wang C; Dong D; Strong PJ; Zhu W; Ma Z; Qin Y; Wu W Microbiome; 2017 Aug; 5(1):103. PubMed ID: 28814344 [TBL] [Abstract][Full Text] [Related]
59. Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China. Sun J; Jin L; He T; Wei Z; Liu X; Zhu L; Li X Sci Total Environ; 2020 Oct; 740():140001. PubMed ID: 32569910 [TBL] [Abstract][Full Text] [Related]
60. Occurrence of antibiotic resistome in farmland soils near phosphorus chemical industrial area. Cheng JH; Tang XY; Guan Z; Liu C Sci Total Environ; 2021 Nov; 796():149053. PubMed ID: 34328884 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]