These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 27798276)

  • 1. Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella.
    Bayly PV; Dutcher SK
    J R Soc Interface; 2016 Oct; 13(123):. PubMed ID: 27798276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element models of flagella with sliding radial spokes and interdoublet links exhibit propagating waves under steady dynein loading.
    Hu T; Bayly PV
    Cytoskeleton (Hoboken); 2018 May; 75(5):185-200. PubMed ID: 29316355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of ciliary beating by steady dynein activity: the effects of inter-filament coupling in multi-filament models.
    Woodhams LG; Shen Y; Bayly PV
    J R Soc Interface; 2022 Jul; 19(192):20220264. PubMed ID: 35857924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instability-driven oscillations of elastic microfilaments.
    Ling F; Guo H; Kanso E
    J R Soc Interface; 2018 Dec; 15(149):20180594. PubMed ID: 30958229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of flagellar and ciliary functioning which uses the forces transverse to the axoneme as the regulator of dynein activation.
    Lindemann CB
    Cell Motil Cytoskeleton; 1994; 29(2):141-54. PubMed ID: 7820864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of unstable modes distinguishes mathematical models of flagellar motion.
    Bayly PV; Wilson KS
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25833248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equations of interdoublet separation during flagella motion reveal mechanisms of wave propagation and instability.
    Bayly PV; Wilson KS
    Biophys J; 2014 Oct; 107(7):1756-72. PubMed ID: 25296329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curvature regulation of the ciliary beat through axonemal twist.
    Sartori P; Geyer VF; Howard J; Jülicher F
    Phys Rev E; 2016 Oct; 94(4-1):042426. PubMed ID: 27841522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How signals of calcium ions initiate the beats of cilia and flagella.
    Satarić MV; Nemeš T; Sekulić D; Tuszynski JA
    Biosystems; 2019 Aug; 182():42-51. PubMed ID: 31202860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical relationships between axoneme distortion and internal forces and torques in ciliary beating.
    Woodhams LG; Bayly PV
    Cytoskeleton (Hoboken); 2024 Nov; 81(11):605-617. PubMed ID: 38546291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella.
    Sartori P; Geyer VF; Scholich A; Jülicher F; Howard J
    Elife; 2016 May; 5():. PubMed ID: 27166516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric distribution and spatial switching of dynein activity generates ciliary motility.
    Lin J; Nicastro D
    Science; 2018 Apr; 360(6387):. PubMed ID: 29700238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear dynamics of cilia and flagella.
    Hilfinger A; Chattopadhyay AK; Jülicher F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051918. PubMed ID: 19518491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flagellar oscillation: a commentary on proposed mechanisms.
    Woolley DM
    Biol Rev Camb Philos Soc; 2010 Aug; 85(3):453-70. PubMed ID: 20002389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does axonemal dynein push, pull, or oscillate?
    Lindemann CB; Hunt AJ
    Cell Motil Cytoskeleton; 2003 Dec; 56(4):237-44. PubMed ID: 14584026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of flagellar axonemes from inner arm dynein knockdown strains of Trypanosoma brucei.
    Zukas R; Chang AJ; Rice M; Springer AL
    Biocell; 2012 Dec; 36(3):133-41. PubMed ID: 23682429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the dynamics of flagellar dynein within the axoneme with Fluctuating Finite Element Analysis.
    Richardson RA; Hanson BS; Read DJ; Harlen OG; Harris SA
    Q Rev Biophys; 2020 Aug; 53():e9. PubMed ID: 32772965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of cyclic dynein-driven sliding, splitting, and reassociation in an outer doublet pair.
    Brokaw CJ
    Biophys J; 2009 Dec; 97(11):2939-47. PubMed ID: 19948123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulation of flagellar movement X: doublet pair splitting and bend propagation modeled using stochastic dynein kinetics.
    Brokaw CJ
    Cytoskeleton (Hoboken); 2014 Apr; 71(4):273-84. PubMed ID: 24574072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetry of inner dynein arms and inter-doublet links in Chlamydomonas flagella.
    Bui KH; Sakakibara H; Movassagh T; Oiwa K; Ishikawa T
    J Cell Biol; 2009 Aug; 186(3):437-46. PubMed ID: 19667131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.