These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27798378)

  • 1. Associations Between Foot Placement Asymmetries and Metabolic Cost of Transport in Hemiparetic Gait.
    Finley JM; Bastian AJ
    Neurorehabil Neural Repair; 2017 Feb; 31(2):168-177. PubMed ID: 27798378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and Temporal Control Contribute to Step Length Asymmetry During Split-Belt Adaptation and Hemiparetic Gait.
    Finley JM; Long A; Bastian AJ; Torres-Oviedo G
    Neurorehabil Neural Repair; 2015 Sep; 29(8):786-95. PubMed ID: 25589580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow and faster post-stroke walkers have a different trunk progression and braking impulse during gait.
    Duclos NC; Duclos C; Nadeau S
    Gait Posture; 2019 Feb; 68():483-487. PubMed ID: 30616177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in self-selected and fastest-comfortable walking in post-stroke hemiparetic persons.
    Beaman CB; Peterson CL; Neptune RR; Kautz SA
    Gait Posture; 2010 Mar; 31(3):311-6. PubMed ID: 20006505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual Differences in Locomotor Function Predict the Capacity to Reduce Asymmetry and Modify the Energetic Cost of Walking Poststroke.
    Sánchez N; Finley JM
    Neurorehabil Neural Repair; 2018 Aug; 32(8):701-713. PubMed ID: 29998788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding inconsistent step-length asymmetries across hemiplegic stroke patients: impairments and compensatory gait.
    Roerdink M; Beek PJ
    Neurorehabil Neural Repair; 2011; 25(3):253-8. PubMed ID: 21041500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of lateral weight transfer is associated with walking speed in individuals post-stroke.
    Hsiao H; Gray VL; Creath RA; Binder-Macleod SA; Rogers MW
    J Biomech; 2017 Jul; 60():72-78. PubMed ID: 28687151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speed and temporal-distance adaptations during treadmill and overground walking following stroke.
    Bayat R; Barbeau H; Lamontagne A
    Neurorehabil Neural Repair; 2005 Jun; 19(2):115-24. PubMed ID: 15883355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foot placement in a body reference frame during walking and its relationship to hemiparetic walking performance.
    Balasubramanian CK; Neptune RR; Kautz SA
    Clin Biomech (Bristol, Avon); 2010 Jun; 25(5):483-90. PubMed ID: 20193972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between walking velocity and distance and the symmetry of temporospatial parameters in chronic post-stroke subjects.
    Guzik A; Drużbicki M; Przysada G; Kwolek A; Brzozowska-Magoń A; Sobolewski M
    Acta Bioeng Biomech; 2017; 19(3):147-154. PubMed ID: 29205208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subtasks affecting step-length asymmetry in post-stroke hemiparetic walking.
    Kim WS
    Hum Mov Sci; 2016 Oct; 49():87-94. PubMed ID: 27348510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of gait biomechanics and metabolic requirements of overground and treadmill walking in people with stroke.
    Brouwer B; Parvataneni K; Olney SJ
    Clin Biomech (Bristol, Avon); 2009 Nov; 24(9):729-34. PubMed ID: 19664866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatio-temporal parameters and intralimb coordination patterns describing hemiparetic locomotion at controlled speed.
    Rinaldi LA; Monaco V
    J Neuroeng Rehabil; 2013 Jun; 10(1):53. PubMed ID: 23758945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal asymmetries in gait predict split-belt adaptation behavior in stroke.
    Malone LA; Bastian AJ
    Neurorehabil Neural Repair; 2014; 28(3):230-40. PubMed ID: 24243917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered muscle activation patterns (AMAP): an analytical tool to compare muscle activity patterns of hemiparetic gait with a normative profile.
    Srivastava S; Patten C; Kautz SA
    J Neuroeng Rehabil; 2019 Jan; 16(1):21. PubMed ID: 30704483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating asymmetry in prosthetic gait with step-length asymmetry alone is flawed.
    Roerdink M; Roeles S; van der Pas SC; Bosboom O; Beek PJ
    Gait Posture; 2012 Mar; 35(3):446-51. PubMed ID: 22153771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tempo-spatial gait adaptations in stroke patients when approaching and crossing an elevated surface.
    Hösl M; Egger M; Bergmann J; Amberger T; Mueller F; Jahn K
    Gait Posture; 2019 Sep; 73():279-285. PubMed ID: 31394371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individuals Poststroke Do Not Perceive Their Spatiotemporal Gait Asymmetries as Abnormal.
    Wutzke CJ; Faldowski RA; Lewek MD
    Phys Ther; 2015 Sep; 95(9):1244-53. PubMed ID: 25838335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pelvic excursion during walking post-stroke: A novel classification system.
    Little VL; McGuirk TE; Perry LA; Patten C
    Gait Posture; 2018 May; 62():395-404. PubMed ID: 29627499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Return to Employment After Stroke in Young Adults: How Important Is the Speed and Energy Cost of Walking?
    Jarvis HL; Brown SJ; Price M; Butterworth C; Groenevelt R; Jackson K; Walker L; Rees N; Clayton A; Reeves ND
    Stroke; 2019 Nov; 50(11):3198-3204. PubMed ID: 31554503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.