BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

755 related articles for article (PubMed ID: 27798563)

  • 1. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library.
    Zhu S; Li W; Liu J; Chen CH; Liao Q; Xu P; Xu H; Xiao T; Cao Z; Peng J; Yuan P; Brown M; Liu XS; Wei W
    Nat Biotechnol; 2016 Dec; 34(12):1279-1286. PubMed ID: 27798563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.
    Klann TS; Black JB; Chellappan M; Safi A; Song L; Hilton IB; Crawford GE; Reddy TE; Gersbach CA
    Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hacking the Cancer Genome: Profiling Therapeutically Actionable Long Non-coding RNAs Using CRISPR-Cas9 Screening.
    Esposito R; Bosch N; Lanzós A; Polidori T; Pulido-Quetglas C; Johnson R
    Cancer Cell; 2019 Apr; 35(4):545-557. PubMed ID: 30827888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput screens in mammalian cells using the CRISPR-Cas9 system.
    Peng J; Zhou Y; Zhu S; Wei W
    FEBS J; 2015 Jun; 282(11):2089-96. PubMed ID: 25731961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GuideScan software for improved single and paired CRISPR guide RNA design.
    Perez AR; Pritykin Y; Vidigal JA; Chhangawala S; Zamparo L; Leslie CS; Ventura A
    Nat Biotechnol; 2017 Apr; 35(4):347-349. PubMed ID: 28263296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pooled CRISPR/AsCpf1 screen using paired gRNAs to induce genomic deletions in Chinese hamster ovary cells.
    Schmieder V; Novak N; Dhiman H; Nguyen LN; Serafimova E; Klanert G; Baumann M; Kildegaard HF; Borth N
    Biotechnol Rep (Amst); 2021 Sep; 31():e00649. PubMed ID: 34277363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the genomic landscape of CRISPR-Cas9 cleavage.
    Cameron P; Fuller CK; Donohoue PD; Jones BN; Thompson MS; Carter MM; Gradia S; Vidal B; Garner E; Slorach EM; Lau E; Banh LM; Lied AM; Edwards LS; Settle AH; Capurso D; Llaca V; Deschamps S; Cigan M; Young JK; May AP
    Nat Methods; 2017 Jun; 14(6):600-606. PubMed ID: 28459459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Screening Approach for the Dissection of Cellular Regulatory Networks of NF-κB Using Arrayed CRISPR gRNA Libraries.
    O'Shea P; Wildenhain J; Leveridge M; Revankar C; Yang JP; Bradley J; Firth M; Pilling J; Piper D; Chesnut J; Isherwood B
    SLAS Discov; 2020 Jul; 25(6):618-633. PubMed ID: 32476557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?
    Taylor J; Woodcock S
    J Biomol Screen; 2015 Sep; 20(8):1040-51. PubMed ID: 26048892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Based Lentiviral Knockout Libraries for Functional Genomic Screening and Identification of Phenotype-Related Genes.
    Thomsen EA; Mikkelsen JG
    Methods Mol Biol; 2019; 1961():343-357. PubMed ID: 30912056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating CRISPR/Cas9 Mediated Monoallelic Deletions to Study Enhancer Function in Mouse Embryonic Stem Cells.
    Moorthy SD; Mitchell JA
    J Vis Exp; 2016 Apr; (110):e53552. PubMed ID: 27078492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas9 for medical genetic screens: applications and future perspectives.
    Xue HY; Ji LJ; Gao AM; Liu P; He JD; Lu XJ
    J Med Genet; 2016 Feb; 53(2):91-7. PubMed ID: 26673779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome engineering using CRISPR-Cas9 system.
    Cong L; Zhang F
    Methods Mol Biol; 2015; 1239():197-217. PubMed ID: 25408407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.
    Konermann S; Brigham MD; Trevino AE; Joung J; Abudayyeh OO; Barcena C; Hsu PD; Habib N; Gootenberg JS; Nishimasu H; Nureki O; Zhang F
    Nature; 2015 Jan; 517(7536):583-8. PubMed ID: 25494202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State of the art technologies to explore long non-coding RNAs in cancer.
    Salehi S; Taheri MN; Azarpira N; Zare A; Behzad-Behbahani A
    J Cell Mol Med; 2017 Dec; 21(12):3120-3140. PubMed ID: 28631377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic impact of CRISPR immunization against bacteriophages.
    Barrangou R; Coûté-Monvoisin AC; Stahl B; Chavichvily I; Damange F; Romero DA; Boyaval P; Fremaux C; Horvath P
    Biochem Soc Trans; 2013 Dec; 41(6):1383-91. PubMed ID: 24256225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets.
    Tsai SQ; Nguyen NT; Malagon-Lopez J; Topkar VV; Aryee MJ; Joung JK
    Nat Methods; 2017 Jun; 14(6):607-614. PubMed ID: 28459458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
    Doetschman T; Georgieva T
    Circ Res; 2017 Mar; 120(5):876-894. PubMed ID: 28254804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CASPR, an analysis pipeline for single and paired guide RNA CRISPR screens, reveals optimal target selection for long non-coding RNAs.
    Bergadà-Pijuan J; Pulido-Quetglas C; Vancura A; Johnson R
    Bioinformatics; 2020 Mar; 36(6):1673-1680. PubMed ID: 31681950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.
    Koike-Yusa H; Li Y; Tan EP; Velasco-Herrera Mdel C; Yusa K
    Nat Biotechnol; 2014 Mar; 32(3):267-73. PubMed ID: 24535568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.