BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 27798597)

  • 1. Cotranscriptional folding of a riboswitch at nucleotide resolution.
    Watters KE; Strobel EJ; Yu AM; Lis JT; Lucks JB
    Nat Struct Mol Biol; 2016 Dec; 23(12):1124-1131. PubMed ID: 27798597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch.
    Uhm H; Kang W; Ha KS; Kang C; Hohng S
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):331-336. PubMed ID: 29279370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Cotranscriptional Folding Kinetics For Riboswitch.
    Sun TT; Zhao C; Chen SJ
    J Phys Chem B; 2018 Aug; 122(30):7484-7496. PubMed ID: 29985608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed biotin-streptavidin transcription roadblocks for mapping cotranscriptional RNA folding.
    Strobel EJ; Watters KE; Nedialkov Y; Artsimovitch I; Lucks JB
    Nucleic Acids Res; 2017 Jul; 45(12):e109. PubMed ID: 28398514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of pseudoknot base pairing on cotranscriptional structural switching of the fluoride riboswitch.
    Hertz LM; White EN; Kuznedelov K; Cheng L; Yu AM; Kakkaramadam R; Severinov K; Chen A; Lucks JB
    Nucleic Acids Res; 2024 May; 52(8):4466-4482. PubMed ID: 38567721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of coordinated RNA folding events by systematic cotranscriptional RNA structure probing.
    Szyjka CE; Strobel EJ
    Nat Commun; 2023 Nov; 14(1):7839. PubMed ID: 38030633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of cotranscriptional folding in an adenine riboswitch.
    Frieda KL; Block SM
    Science; 2012 Oct; 338(6105):397-400. PubMed ID: 23087247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time monitoring of single ZTP riboswitches reveals a complex and kinetically controlled decision landscape.
    Hua B; Jones CP; Mitra J; Murray PJ; Rosenthal R; Ferré-D'Amaré AR; Ha T
    Nat Commun; 2020 Sep; 11(1):4531. PubMed ID: 32913225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computationally reconstructing cotranscriptional RNA folding from experimental data reveals rearrangement of non-native folding intermediates.
    Yu AM; Gasper PM; Cheng L; Lai LB; Kaur S; Gopalan V; Chen AA; Lucks JB
    Mol Cell; 2021 Feb; 81(4):870-883.e10. PubMed ID: 33453165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic competition between a ligand and transcription factor NusA governs riboswitch-mediated transcription regulation.
    Chauvier A; Ajmera P; Yadav R; Walter NG
    Proc Natl Acad Sci U S A; 2021 Nov; 118(47):. PubMed ID: 34782462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ligand-gated strand displacement mechanism for ZTP riboswitch transcription control.
    Strobel EJ; Cheng L; Berman KE; Carlson PD; Lucks JB
    Nat Chem Biol; 2019 Nov; 15(11):1067-1076. PubMed ID: 31636437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch.
    Perdrizet GA; Artsimovitch I; Furman R; Sosnick TR; Pan T
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3323-8. PubMed ID: 22331895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Guide to Computational Cotranscriptional Folding Featuring the SRP RNA.
    Badelt S; Lorenz R
    Methods Mol Biol; 2024; 2726():315-346. PubMed ID: 38780737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DUETT quantitatively identifies known and novel events in nascent RNA structural dynamics from chemical probing data.
    Xue AY; Yu AM; Lucks JB; Bagheri N
    Bioinformatics; 2019 Dec; 35(24):5103-5112. PubMed ID: 31389563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The regulation mechanism of yitJ and metF riboswitches.
    Gong S; Wang Y; Zhang W
    J Chem Phys; 2015 Jul; 143(4):045103. PubMed ID: 26233166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secondary structural entropy in RNA switch (Riboswitch) identification.
    Manzourolajdad A; Arnold J
    BMC Bioinformatics; 2015 Apr; 16():133. PubMed ID: 25928324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kissing loop is important for btuB riboswitch ligand sensing and regulatory control.
    Lussier A; Bastet L; Chauvier A; Lafontaine DA
    J Biol Chem; 2015 Oct; 290(44):26739-51. PubMed ID: 26370077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for control of bacterial RNA polymerase pausing by a riboswitch and its ligand.
    Chauvier A; Porta JC; Deb I; Ellinger E; Meze K; Frank AT; Ohi MD; Walter NG
    Nat Struct Mol Biol; 2023 Jul; 30(7):902-913. PubMed ID: 37264140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cotranscriptional RNA strand exchange underlies the gene regulation mechanism in a purine-sensing transcriptional riboswitch.
    Cheng L; White EN; Brandt NL; Yu AM; Chen AA; Lucks JB
    Nucleic Acids Res; 2022 Nov; 50(21):12001-12018. PubMed ID: 35348734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.