BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27798802)

  • 1. Geostatistical interpolation of available copper in orchard soil as influenced by planting duration.
    Fu C; Zhang H; Tu C; Li L; Luo Y
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):52-63. PubMed ID: 27798802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contamination of apple orchard soils and fruit trees with copper-based fungicides: sampling aspects.
    Wang Q; Liu J; Liu Q
    Environ Monit Assess; 2015 Jan; 187(1):4121. PubMed ID: 25407992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution and fractionation of copper in soils of apple orchards.
    Li W; Zhang M; Shu H
    Environ Sci Pollut Res Int; 2005; 12(3):168-72. PubMed ID: 15987001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper and zinc fractionation in apple orchard soil in the village of Bukevje (Croatia) using the revised four-step BCR extraction procedure.
    Medunić G; Juranović Cindrić I; Lovrenčić Mikelić I; Tomašić N; Balen D; Oreščanin V; Kampić Š; Ivković I
    Arh Hig Rada Toksikol; 2013 Dec; 64(4):531-8. PubMed ID: 24384759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy and uncertainty analysis of soil Bbf spatial distribution estimation at a coking plant-contaminated site based on normalization geostatistical technologies.
    Liu G; Niu J; Zhang C; Guo G
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):20121-30. PubMed ID: 26300353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil accumulation and chemical fractions of Cu in a large and long-term coastal apple orchard, North China.
    Fu C; Tu C; Zhang H; Li Y; Li L; Zhou Q; Scheckel KG; Luo Y
    J Soils Sediments; 2020 Jun; 20():3712-3721. PubMed ID: 35250383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing.
    Qiao P; Lei M; Yang S; Yang J; Guo G; Zhou X
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15597-15608. PubMed ID: 29572743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China.
    Li L; Wu H; van Gestel CA; Peijnenburg WJ; Allen HE
    Environ Pollut; 2014 May; 188():144-52. PubMed ID: 24583712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils.
    Van Zwieten L; Rust J; Kingston T; Merrington G; Morris S
    Sci Total Environ; 2004 Aug; 329(1-3):29-41. PubMed ID: 15262156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils.
    Juang KW; Chen YS; Lee DY
    Environ Pollut; 2004; 127(2):229-38. PubMed ID: 14568722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial variations of concentrations of copper and its speciation in the soil-rice system in Wenling of southeastern China.
    Zhao K; Fu W; Liu X; Huang D; Zhang C; Ye Z; Xu J
    Environ Sci Pollut Res Int; 2014; 21(11):7165-76. PubMed ID: 24562455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper in soil fractions and runoff in a vineyard catchment: Insights from copper stable isotopes.
    Babcsányi I; Chabaux F; Granet M; Meite F; Payraudeau S; Duplay J; Imfeld G
    Sci Total Environ; 2016 Jul; 557-558():154-62. PubMed ID: 26994803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Normalization Methods on Accuracy of Estimating Low- and High-Molecular Weight PAHs Distribution in the Soils of a Coking Plant.
    Yuan Y; Yang K; Cheng L; Bai Y; Wang Y; Hou Y; Ding A
    Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing soil Cu content and anthropogenic influences using decision tree analysis.
    Zhang X; Lin F; Jiang Y; Wang K; Wong MT
    Environ Pollut; 2008 Dec; 156(3):1260-7. PubMed ID: 18455844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of chemical and toxicological tools to assess the bioavailability of copper derived from different copper-based fungicides in soil.
    Wang QY; Sun JY; Xu XJ; Yu HW
    Ecotoxicol Environ Saf; 2018 Oct; 161():662-668. PubMed ID: 29935430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping Copper and Lead Concentrations at Abandoned Mine Areas Using Element Analysis Data from ICP-AES and Portable XRF Instruments: A Comparative Study.
    Lee H; Choi Y; Suh J; Lee SH
    Int J Environ Res Public Health; 2016 Mar; 13(4):384. PubMed ID: 27043594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption behaviors of fungicide-derived copper onto various size fractions of aggregates from orchard soil.
    Wang QY; Hu B; Yu HW
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):24983-24990. PubMed ID: 27677988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial uncertainty assessment of the environmental risk of soil copper using auxiliary portable X-ray fluorescence spectrometry data and soil pH.
    Qu M; Wang Y; Huang B; Zhao Y
    Environ Pollut; 2018 Sep; 240():184-190. PubMed ID: 29734079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China.
    Sun C; Liu J; Wang Y; Sun L; Yu H
    Chemosphere; 2013 Jul; 92(5):517-23. PubMed ID: 23608467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability of total and available copper concentrations in relation to land use and soil properties in Yangtze River Delta of China.
    Zhang X; Lin F; Jiang Y; Wang K; Feng XL
    Environ Monit Assess; 2009 Aug; 155(1-4):205-13. PubMed ID: 18618282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.