These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 27798835)
21. On interfacial viscosity in nanochannels. Nazari M; Davoodabadi A; Huang D; Luo T; Ghasemi H Nanoscale; 2020 Jul; 12(27):14626-14635. PubMed ID: 32614001 [TBL] [Abstract][Full Text] [Related]
22. Capillary rise in nanopores: molecular dynamics evidence for the Lucas-Washburn equation. Dimitrov DI; Milchev A; Binder K Phys Rev Lett; 2007 Aug; 99(5):054501. PubMed ID: 17930760 [TBL] [Abstract][Full Text] [Related]
23. Forced imbibition-a tool for separate determination of Laplace pressure and drag force in capillary filling experiments. Dimitrov DI; Milchev A; Binder K Phys Chem Chem Phys; 2008 Apr; 10(14):1867-9. PubMed ID: 18368178 [TBL] [Abstract][Full Text] [Related]
24. Capillary flow enhancement in rectangular polymer microchannels with a deformable wall. Anoop R; Sen AK Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013024. PubMed ID: 26274286 [TBL] [Abstract][Full Text] [Related]
25. Competitive spreading versus imbibition of polymer liquid drops in nanoporous membranes: scaling behavior with viscosity. Haidara H; Lebeau B; Grzelakowski C; Vonna L; Biguenet F; Vidal L Langmuir; 2008 Apr; 24(8):4209-14. PubMed ID: 18302434 [TBL] [Abstract][Full Text] [Related]
26. Dynamics and stability of two-potential flows in the porous media. Markicevic B; Bijeljic B; Navaz HK Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056324. PubMed ID: 22181515 [TBL] [Abstract][Full Text] [Related]
27. Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes. Joly L J Chem Phys; 2011 Dec; 135(21):214705. PubMed ID: 22149809 [TBL] [Abstract][Full Text] [Related]
28. Fast Electrically Driven Capillary Rise Using Overdrive Voltage. Hong SJ; Hong J; Seo HW; Lee SJ; Chung SK Langmuir; 2015 Dec; 31(51):13718-24. PubMed ID: 26641954 [TBL] [Abstract][Full Text] [Related]
29. Effects of dynamic contact angle on liquid withdrawal from capillary tubes: (semi)-analytical solutions. Hilpert M J Colloid Interface Sci; 2010 Jul; 347(2):315-23. PubMed ID: 20400087 [TBL] [Abstract][Full Text] [Related]
30. Effects of symmetry breaking in the viscous pumping of an oscillating plate in the intermediate Reynolds numbers. Saffaraval F; Goudarzi N Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33007764 [TBL] [Abstract][Full Text] [Related]
31. A mathematical model of valveless pumping: a lumped model with time-dependent compliance, resistance, and inertia. Jung E Bull Math Biol; 2007 Oct; 69(7):2181-98. PubMed ID: 17457651 [TBL] [Abstract][Full Text] [Related]
32. Is Unidirectional Drying in a Round Capillary Always Diffusive? Le Dizès Castell R; Prat M; Jabbari Farouji S; Shahidzadeh N Langmuir; 2023 Apr; 39(15):5462-5468. PubMed ID: 37024431 [TBL] [Abstract][Full Text] [Related]
33. Effect of intrinsic angular momentum in the capillary filling dynamics of viscous fluids. Gheshlaghi B; Nazaripoor H; Kumar A; Sadrzadeh M J Colloid Interface Sci; 2016 Oct; 479():80-86. PubMed ID: 27376971 [TBL] [Abstract][Full Text] [Related]
34. Open-Channel Capillary Trees and Capillary Pumping. Lee JJ; Berthier J; Kearney KE; Berthier E; Theberge AB Langmuir; 2020 Nov; 36(43):12795-12803. PubMed ID: 32936651 [TBL] [Abstract][Full Text] [Related]
35. An inertia enhanced passive pumping mechanism for fluid flow in microfluidic devices. Resto PJ; Berthier E; Beebe DJ; Williams JC Lab Chip; 2012 Jun; 12(12):2221-8. PubMed ID: 22441561 [TBL] [Abstract][Full Text] [Related]