These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 27799041)

  • 1. Separation of Biologically Active Compounds by Membrane Operations.
    Zhu X; Bai R
    Curr Pharm Des; 2017; 23(2):218-230. PubMed ID: 27799041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane processes and devices for separation of bioactive peptides.
    Bazinet L; Firdaous L
    Recent Pat Biotechnol; 2009; 3(1):61-72. PubMed ID: 19149724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of Anthocyanins Using Membrane Technologies: A Review.
    Martín J; Díaz-Montaña EJ; Asuero AG
    Crit Rev Anal Chem; 2018 May; 48(3):143-175. PubMed ID: 29185791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroactive Membranes for Water Treatment: Enhanced Treatment Functionalities, Energy Considerations, and Future Challenges.
    Zhu X; Jassby D
    Acc Chem Res; 2019 May; 52(5):1177-1186. PubMed ID: 31032611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane Separation of Chicken Byproduct Hydrolysate for Up-Concentration of Bioactive Peptides.
    Dibdiakova J; Matic J; Wubshet SG; Uhl W; Manamperuma LD; Rusten B; Vik EA
    Membranes (Basel); 2024 Jan; 14(2):. PubMed ID: 38392655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving very low mercury levels in refinery wastewater by membrane filtration.
    Urgun-Demirtas M; Benda PL; Gillenwater PS; Negri MC; Xiong H; Snyder SW
    J Hazard Mater; 2012 May; 215-216():98-107. PubMed ID: 22410725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of bioactive peptides by membrane processes: technologies and devices.
    Bazinet L; Firdaous L
    Recent Pat Biotechnol; 2013 Apr; 7(1):9-27. PubMed ID: 23003009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of membrane techniques for purification of natural products.
    Li J; Chase HA
    Biotechnol Lett; 2010 May; 32(5):601-8. PubMed ID: 20049625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane processing technology in the food industry: food processing, wastewater treatment, and effects on physical, microbiological, organoleptic, and nutritional properties of foods.
    Kotsanopoulos KV; Arvanitoyannis IS
    Crit Rev Food Sci Nutr; 2015; 55(9):1147-75. PubMed ID: 24915344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products.
    Cassano A; Conidi C; Ruby-Figueroa R; Castro-Muñoz R
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29364859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM).
    Lee N; Amy G; Croué JP; Buisson H
    Water Res; 2004 Dec; 38(20):4511-23. PubMed ID: 15556226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface water filtration using granular media and membranes: A review.
    Hoslett J; Massara TM; Malamis S; Ahmad D; van den Boogaert I; Katsou E; Ahmad B; Ghazal H; Simons S; Wrobel L; Jouhara H
    Sci Total Environ; 2018 Oct; 639():1268-1282. PubMed ID: 29929294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentration and Fractionation of Polyphenols by Membrane Operations.
    Tylkowski B; Nowak M; Tsibranska I; Trojanowska A; Marciniak L; Valls RG; Gumi T; Giamberini M; Jastrząb R
    Curr Pharm Des; 2017; 23(2):231-241. PubMed ID: 27774906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrodialysis with porous membrane for bioproduct separation: Technology, features, and progress.
    Sun L; Chen Q; Lu H; Wang J; Zhao J; Li P
    Food Res Int; 2020 Nov; 137():109343. PubMed ID: 33233052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane foulants and fouling mechanisms in microfiltration and ultrafiltration of an activated sludge effluent.
    Nguyen ST; Roddick FA; Harris JL
    Water Sci Technol; 2010; 62(9):1975-83. PubMed ID: 21045321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes.
    Yamamura H; Okimoto K; Kimura K; Watanabe Y
    Water Res; 2014 May; 54():123-36. PubMed ID: 24565803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A process efficiency assessment of serum protein removal from milk using ceramic graded permeability microfiltration membrane.
    Tremblay-Marchand D; Doyen A; Britten M; Pouliot Y
    J Dairy Sci; 2016 Jul; 99(7):5230-5243. PubMed ID: 27132105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the effect of humic acids and phenol on adsorption-ultrafiltration process performance.
    Mozia S; Tomaszewska M; Morawski AW
    Water Res; 2005; 39(2-3):501-9. PubMed ID: 15644259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of membrane properties on physically reversible and irreversible fouling in membrane bioreactors.
    Tsuyuhara T; Hanamoto Y; Miyoshi T; Kimura K; Watanabe Y
    Water Sci Technol; 2010; 61(9):2235-40. PubMed ID: 20418619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel antifouling technique for the crossflow filtration using porous membranes: Experimental and CFD investigations of the periodic feed pressure technique.
    Zoubeik M; Salama A; Henni A
    Water Res; 2018 Dec; 146():159-176. PubMed ID: 30243059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.