BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 27799366)

  • 1. HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci.
    Aird KM; Iwasaki O; Kossenkov AV; Tanizawa H; Fatkhutdinov N; Bitler BG; Le L; Alicea G; Yang TL; Johnson FB; Noma KI; Zhang R
    J Cell Biol; 2016 Nov; 215(3):325-334. PubMed ID: 27799366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HMGB2 holds the key to the senescence-associated secretory phenotype.
    Guerrero A; Gil J
    J Cell Biol; 2016 Nov; 215(3):297-299. PubMed ID: 27799373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial and Temporal Control of Senescence.
    Ito Y; Hoare M; Narita M
    Trends Cell Biol; 2017 Nov; 27(11):820-832. PubMed ID: 28822679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of lamin B receptor in the regulation of senescence-associated secretory phenotype (SASP).
    En A; Takauji Y; Ayusawa D; Fujii M
    Exp Cell Res; 2020 May; 390(1):111927. PubMed ID: 32126237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topoisomerase 1 cleavage complex enables pattern recognition and inflammation during senescence.
    Zhao B; Liu P; Fukumoto T; Nacarelli T; Fatkhutdinov N; Wu S; Lin J; Aird KM; Tang HY; Liu Q; Speicher DW; Zhang R
    Nat Commun; 2020 Feb; 11(1):908. PubMed ID: 32075966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone Variant H2A.J Marks Persistent DNA Damage and Triggers the Secretory Phenotype in Radiation-Induced Senescence.
    Isermann A; Mann C; Rübe CE
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33266246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global reorganization of the nuclear landscape in senescent cells.
    Chandra T; Ewels PA; Schoenfelder S; Furlan-Magaril M; Wingett SW; Kirschner K; Thuret JY; Andrews S; Fraser P; Reik W
    Cell Rep; 2015 Feb; 10(4):471-83. PubMed ID: 25640177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional Repression of High-Mobility Group Box 2 by p21 in Radiation-Induced Senescence.
    Kim HK; Kang MA; Kim MS; Shin YJ; Chi SG; Jeong JH
    Mol Cells; 2018 Apr; 41(4):362-372. PubMed ID: 29487276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Histone Variant H2A.J in Fine-Tuning Chromatin Organization for the Establishment of Ionizing Radiation-Induced Senescence.
    Abd Al-Razaq MA; Freyter BM; Isermann A; Tewary G; Mangelinck A; Mann C; Rübe CE
    Cells; 2023 Mar; 12(6):. PubMed ID: 36980257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HMGB2 Loss upon Senescence Entry Disrupts Genomic Organization and Induces CTCF Clustering across Cell Types.
    Zirkel A; Nikolic M; Sofiadis K; Mallm JP; Brackley CA; Gothe H; Drechsel O; Becker C; Altmüller J; Josipovic N; Georgomanolis T; Brant L; Franzen J; Koker M; Gusmao EG; Costa IG; Ullrich RT; Wagner W; Roukos V; Nürnberg P; Marenduzzo D; Rippe K; Papantonis A
    Mol Cell; 2018 May; 70(4):730-744.e6. PubMed ID: 29706538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BRG1 is required for formation of senescence-associated heterochromatin foci induced by oncogenic RAS or BRCA1 loss.
    Tu Z; Zhuang X; Yao YG; Zhang R
    Mol Cell Biol; 2013 May; 33(9):1819-29. PubMed ID: 23438604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Aspects of Senescence and Organismal Ageing-DNA Damage Response, Telomeres, Inflammation and Chromatin.
    Sławińska N; Krupa R
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33435578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of p16 alleviates the senescence-associated secretory phenotype.
    Buj R; Leon KE; Anguelov MA; Aird KM
    Aging (Albany NY); 2021 Feb; 13(3):3290-3312. PubMed ID: 33550279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin basis of the senescence-associated secretory phenotype.
    Hao X; Wang C; Zhang R
    Trends Cell Biol; 2022 Jun; 32(6):513-526. PubMed ID: 35012849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dissection of formation of senescence-associated heterochromatin foci.
    Zhang R; Chen W; Adams PD
    Mol Cell Biol; 2007 Mar; 27(6):2343-58. PubMed ID: 17242207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Senescence-Associated Secretory Phenotype: Critical Effector in Skin Cancer and Aging.
    Ghosh K; Capell BC
    J Invest Dermatol; 2016 Nov; 136(11):2133-2139. PubMed ID: 27543988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reciprocal Regulation of the Cardiac Epigenome by Chromatin Structural Proteins Hmgb and Ctcf: IMPLICATIONS FOR TRANSCRIPTIONAL REGULATION.
    Monte E; Rosa-Garrido M; Karbassi E; Chen H; Lopez R; Rau CD; Wang J; Nelson SF; Wu Y; Stefani E; Lusis AJ; Wang Y; Kurdistani SK; Franklin S; Vondriska TM
    J Biol Chem; 2016 Jul; 291(30):15428-46. PubMed ID: 27226577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential Regulators of the Senescence-Associated Secretory Phenotype During Senescence and Aging.
    Han X; Lei Q; Xie J; Liu H; Li J; Zhang X; Zhang T; Gou X
    J Gerontol A Biol Sci Med Sci; 2022 Nov; 77(11):2207-2218. PubMed ID: 35524726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA.
    Zhang R; Poustovoitov MV; Ye X; Santos HA; Chen W; Daganzo SM; Erzberger JP; Serebriiskii IG; Canutescu AA; Dunbrack RL; Pehrson JR; Berger JM; Kaufman PD; Adams PD
    Dev Cell; 2005 Jan; 8(1):19-30. PubMed ID: 15621527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond SAHF: An integrative view of chromatin compartmentalization during senescence.
    Olan I; Handa T; Narita M
    Curr Opin Cell Biol; 2023 Aug; 83():102206. PubMed ID: 37451177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.