BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27799473)

  • 21. Short spacing between the Shine-Dalgarno sequence and P codon destabilizes codon-anticodon pairing in the P site to promote +1 programmed frameshifting.
    Devaraj A; Fredrick K
    Mol Microbiol; 2010 Dec; 78(6):1500-9. PubMed ID: 21143320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions of translational factor EF-G with the bacterial ribosome before and after mRNA translocation.
    Wilson KS; Nechifor R
    J Mol Biol; 2004 Mar; 337(1):15-30. PubMed ID: 15001349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translocation as continuous movement through the ribosome.
    Belardinelli R; Sharma H; Peske F; Wintermeyer W; Rodnina MV
    RNA Biol; 2016 Dec; 13(12):1197-1203. PubMed ID: 27801619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA.
    Herr AJ; Nelson CC; Wills NM; Gesteland RF; Atkins JF
    J Mol Biol; 2001 Jun; 309(5):1029-48. PubMed ID: 11399077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elongation factor G initiates translocation through a power stroke.
    Chen C; Cui X; Beausang JF; Zhang H; Farrell I; Cooperman BS; Goldman YE
    Proc Natl Acad Sci U S A; 2016 Jul; 113(27):7515-20. PubMed ID: 27313204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of the stacking potential of the base 3' of tandem shift codons on -1 ribosomal frameshifting used for gene expression.
    Bertrand C; Prère MF; Gesteland RF; Atkins JF; Fayet O
    RNA; 2002 Jan; 8(1):16-28. PubMed ID: 11871658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The interplay of mRNA stimulatory signals required for AUU-mediated initiation and programmed -1 ribosomal frameshifting in decoding of transposable element IS911.
    Prère MF; Canal I; Wills NM; Atkins JF; Fayet O
    J Bacteriol; 2011 Jun; 193(11):2735-44. PubMed ID: 21478364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural probing and mutagenic analysis of the stem-loop required for Escherichia coli dnaX ribosomal frameshifting: programmed efficiency of 50%.
    Larsen B; Gesteland RF; Atkins JF
    J Mol Biol; 1997 Aug; 271(1):47-60. PubMed ID: 9300054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elongation factor G-induced structural change in helix 34 of 16S rRNA related to translocation on the ribosome.
    Matassova AB; Rodnina MV; Wintermeyer W
    RNA; 2001 Dec; 7(12):1879-85. PubMed ID: 11780642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Translocation kinetics and structural dynamics of ribosomes are modulated by the conformational plasticity of downstream pseudoknots.
    Wu B; Zhang H; Sun R; Peng S; Cooperman BS; Goldman YE; Chen C
    Nucleic Acids Res; 2018 Oct; 46(18):9736-9748. PubMed ID: 30011005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of Hepta- and Octo-Uridine stretches as sole signals for programmed +1 and -1 ribosomal frameshifting during translation of SARS-CoV ORF 3a variants.
    Wang X; Wong SM; Liu DX
    Nucleic Acids Res; 2006; 34(4):1250-60. PubMed ID: 16500894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crosslinking of translation factor EF-G to proteins of the bacterial ribosome before and after translocation.
    Nechifor R; Wilson KS
    J Mol Biol; 2007 May; 368(5):1412-25. PubMed ID: 17395204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Upstream stimulators for recoding.
    Larsen B; Peden J; Matsufuji S; Matsufuji T; Brady K; Maldonado R; Wills NM; Fayet O; Atkins JF; Gesteland RF
    Biochem Cell Biol; 1995; 73(11-12):1123-9. PubMed ID: 8722029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Miscoding-induced stalling of substrate translocation on the bacterial ribosome.
    Alejo JL; Blanchard SC
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):E8603-E8610. PubMed ID: 28973849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site.
    Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA
    J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the pathway of ribosomal translocation.
    Xie P
    Int J Biol Macromol; 2016 Nov; 92():401-415. PubMed ID: 27431796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Programmed translational -1 frameshifting on hexanucleotide motifs and the wobble properties of tRNAs.
    Licznar P; Mejlhede N; Prère MF; Wills N; Gesteland RF; Atkins JF; Fayet O
    EMBO J; 2003 Sep; 22(18):4770-8. PubMed ID: 12970189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-molecule structural dynamics of EF-G--ribosome interaction during translocation.
    Wang Y; Qin H; Kudaravalli RD; Kirillov SV; Dempsey GT; Pan D; Cooperman BS; Goldman YE
    Biochemistry; 2007 Sep; 46(38):10767-75. PubMed ID: 17727272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation.
    Peske F; Savelsbergh A; Katunin VI; Rodnina MV; Wintermeyer W
    J Mol Biol; 2004 Nov; 343(5):1183-94. PubMed ID: 15491605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A role for the 30S subunit E site in maintenance of the translational reading frame.
    Devaraj A; Shoji S; Holbrook ED; Fredrick K
    RNA; 2009 Feb; 15(2):255-65. PubMed ID: 19095617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.