These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 27799529)

  • 1. Mapping intracellular mechanics on micropatterned substrates.
    Mandal K; Asnacios A; Goud B; Manneville JB
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7159-E7168. PubMed ID: 27799529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers.
    Bausch AR; Möller W; Sackmann E
    Biophys J; 1999 Jan; 76(1 Pt 1):573-9. PubMed ID: 9876170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotational magnetic endosome microrheology: viscoelastic architecture inside living cells.
    Wilhelm C; Gazeau F; Bacri JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061908. PubMed ID: 16241262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microrheology, stress fluctuations, and active behavior of living cells.
    Lau AW; Hoffman BD; Davies A; Crocker JC; Lubensky TC
    Phys Rev Lett; 2003 Nov; 91(19):198101. PubMed ID: 14611619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular viscoelasticity probed by active rheology in optical tweezers.
    Lyubin EV; Khokhlova MD; Skryabina MN; Fedyanin AA
    J Biomed Opt; 2012 Oct; 17(10):101510. PubMed ID: 23223986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear microrheology with optical tweezers of living cells 'is not an option'!
    Tassieri M
    Soft Matter; 2015 Aug; 11(29):5792-8. PubMed ID: 26100967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cell as a material.
    Kasza KE; Rowat AC; Liu J; Angelini TE; Brangwynne CP; Koenderink GH; Weitz DA
    Curr Opin Cell Biol; 2007 Feb; 19(1):101-7. PubMed ID: 17174543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Living cells as a biological analog of optical tweezers - a non-invasive microrheology approach.
    Hardiman W; Clark M; Friel C; Huett A; Pérez-Cota F; Setchfield K; Wright AJ; Tassieri M
    Acta Biomater; 2023 Aug; 166():317-325. PubMed ID: 37137402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of living cell micromechanical properties by oscillatory optical tweezers.
    Wei MT; Zaorski A; Yalcin HC; Wang J; Ghadiali SN; Chiou A; Ou-Yang HD
    Opt Express; 2008 Jun; 16(12):8594-603. PubMed ID: 18545572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size- and speed-dependent mechanical behavior in living mammalian cytoplasm.
    Hu J; Jafari S; Han Y; Grodzinsky AJ; Cai S; Guo M
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9529-9534. PubMed ID: 28827333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microviscoelasticity of the apical cell surface of human umbilical vein endothelial cells (HUVEC) within confluent monolayers.
    Feneberg W; Aepfelbacher M; Sackmann E
    Biophys J; 2004 Aug; 87(2):1338-50. PubMed ID: 15298936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale rheology of glioma cells.
    Alibert C; Pereira D; Lardier N; Etienne-Manneville S; Goud B; Asnacios A; Manneville JB
    Biomaterials; 2021 Aug; 275():120903. PubMed ID: 34102526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology.
    Robert D; Nguyen TH; Gallet F; Wilhelm C
    PLoS One; 2010 Apr; 5(4):e10046. PubMed ID: 20386607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency microrheology in 3D reveals mismatch between cytoskeletal and extracellular matrix mechanics.
    Staunton JR; So WY; Paul CD; Tanner K
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14448-14455. PubMed ID: 31266897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical trapping microrheology in cultured human cells.
    Bertseva E; Grebenkov D; Schmidhauser P; Gribkova S; Jeney S; Forró L
    Eur Phys J E Soft Matter; 2012 Jul; 35(7):63. PubMed ID: 22821510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local viscoelasticity of living cells measured by rotational magnetic spectroscopy.
    Berret JF
    Nat Commun; 2016 Jan; 7():10134. PubMed ID: 26729062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studying single red blood cells under a tunable external force by combining passive microrheology with Raman spectroscopy.
    Raj S; Wojdyla M; Petrov D
    Cell Biochem Biophys; 2013 Apr; 65(3):347-61. PubMed ID: 23080020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers.
    Dai J; Sheetz MP
    Biophys J; 1995 Mar; 68(3):988-96. PubMed ID: 7756561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microrheology of keratin networks in cancer cells.
    Paust T; Paschke S; Beil M; Marti O
    Phys Biol; 2013 Dec; 10(6):065008. PubMed ID: 24305115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.