These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
406 related articles for article (PubMed ID: 27799656)
1. Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth. Ćuk M; Hamilton DP; Lock SJ; Stewart ST Nature; 2016 Nov; 539(7629):402-406. PubMed ID: 27799656 [TBL] [Abstract][Full Text] [Related]
2. Analytical Model for the Tidal Evolution of the Evection Resonance and the Timing of Resonance Escape. Ward WR; Canup RM; Rufu R J Geophys Res Planets; 2020 Jun; 125(6):e2019JE006266. PubMed ID: 33042721 [TBL] [Abstract][Full Text] [Related]
3. Anthropic selection for the Moon's mass. Waltham D Astrobiology; 2004; 4(4):460-8. PubMed ID: 15684727 [TBL] [Abstract][Full Text] [Related]
4. Vertical angular momentum constraint on lunar formation and orbital history. Tian Z; Wisdom J Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15460-15464. PubMed ID: 32571906 [TBL] [Abstract][Full Text] [Related]
5. Origin of the Moon's orbital inclination from resonant disk interactions. Ward WR; Canup RM Nature; 2000 Feb; 403(6771):741-3. PubMed ID: 10693796 [TBL] [Abstract][Full Text] [Related]
6. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Ćuk M; Stewart ST Science; 2012 Nov; 338(6110):1047-52. PubMed ID: 23076099 [TBL] [Abstract][Full Text] [Related]
7. New approaches to the Moon's isotopic crisis. Melosh HJ Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130168. PubMed ID: 25114301 [TBL] [Abstract][Full Text] [Related]
8. Collisionless encounters and the origin of the lunar inclination. Pahlevan K; Morbidelli A Nature; 2015 Nov; 527(7579):492-4. PubMed ID: 26607544 [TBL] [Abstract][Full Text] [Related]
9. LUNAR VOLATILE DEPLETION DUE TO INCOMPLETE ACCRETION WITHIN AN IMPACT-GENERATED DISK. Canup RM; Visscher C; Salmon J; Fegley B Nat Geosci; 2015; 8():918-921. PubMed ID: 31360221 [TBL] [Abstract][Full Text] [Related]
10. Origin of the Moon in a giant impact near the end of the Earth's formation. Canup RM; Asphaug E Nature; 2001 Aug; 412(6848):708-12. PubMed ID: 11507633 [TBL] [Abstract][Full Text] [Related]
11. Isotopes as tracers of the sources of the lunar material and processes of lunar origin. Pahlevan K Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130257. PubMed ID: 25114306 [TBL] [Abstract][Full Text] [Related]
12. Low-latitude glaciation and rapid changes in the Earth's obliquity explained by obliquity-oblateness feedback. Williams DM; Kasting JF; Frakes LA Nature; 1998 Dec; 396(6710):453-5. PubMed ID: 9853751 [TBL] [Abstract][Full Text] [Related]
13. The origin of the Moon's Earth-like tungsten isotopic composition from dynamical and geochemical modeling. Fischer RA; Zube NG; Nimmo F Nat Commun; 2021 Jan; 12(1):35. PubMed ID: 33397911 [TBL] [Abstract][Full Text] [Related]
14. Long-Term Earth-Moon Evolution With High-Level Orbit and Ocean Tide Models. Daher H; Arbic BK; Williams JG; Ansong JK; Boggs DH; Müller M; Schindelegger M; Austermann J; Cornuelle BD; Crawford EB; Fringer OB; Lau HCP; Lock SJ; Maloof AC; Menemenlis D; Mitrovica JX; Green JAM; Huber M J Geophys Res Planets; 2021 Dec; 126(12):e2021JE006875. PubMed ID: 35846556 [TBL] [Abstract][Full Text] [Related]
15. A young Moon-forming giant impact at 70-110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Halliday AN Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4163-81. PubMed ID: 18826916 [TBL] [Abstract][Full Text] [Related]
16. The tidal-rotational shape of the Moon and evidence for polar wander. Garrick-Bethell I; Perera V; Nimmo F; Zuber MT Nature; 2014 Aug; 512(7513):181-4. PubMed ID: 25079322 [TBL] [Abstract][Full Text] [Related]
17. Potassium isotopic evidence for a high-energy giant impact origin of the Moon. Wang K; Jacobsen SB Nature; 2016 Oct; 538(7626):487-490. PubMed ID: 27617635 [TBL] [Abstract][Full Text] [Related]
18. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission. Livengood TA; Deming LD; A'hearn MF; Charbonneau D; Hewagama T; Lisse CM; McFadden LA; Meadows VS; Robinson TD; Seager S; Wellnitz DD Astrobiology; 2011 Nov; 11(9):907-30. PubMed ID: 22077375 [TBL] [Abstract][Full Text] [Related]
19. Accretion of the Moon from non-canonical discs. Salmon J; Canup RM Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130256. PubMed ID: 25114307 [TBL] [Abstract][Full Text] [Related]
20. Lunar-forming impacts: processes and alternatives. Canup RM Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130175. PubMed ID: 25114302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]