These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27799727)

  • 1. Parallel Robot for Lower Limb Rehabilitation Exercises.
    Rastegarpanah A; Saadat M; Borboni A
    Appl Bionics Biomech; 2016; 2016():8584735. PubMed ID: 27799727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower Limb Rehabilitation Using Patient Data.
    Rastegarpanah A; Saadat M
    Appl Bionics Biomech; 2016; 2016():2653915. PubMed ID: 27721648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.
    Chiang MH; Lin HT
    Sensors (Basel); 2011; 11(12):11476-94. PubMed ID: 22247676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Optimization of a Hybrid-Driven Waist Rehabilitation Robot.
    Zi B; Yin G; Zhang D
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.
    Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screw theory based mathematical modeling and kinematic analysis of a novel ankle rehabilitation robot with a constrained 3-PSP mechanism topology.
    Liao Z; Yao L; Lu Z; Zhang J
    Int J Intell Robot Appl; 2018; 2(3):351-360. PubMed ID: 30294664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematics and Workspace Analysis of xArm6 Robot for Activities of Daily Living.
    Munoz E; Sunny MSH; Rulik I; Sanjuan De Caro JD; Rahman MH
    Proc Int Conf Ind Mech Eng Oper Manag; 2021; 4(4):885-894. PubMed ID: 35719427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamification and Control of Nitinol Based Ankle Rehabilitation Robot.
    Hau CT; Gouwanda D; Gopalai AA; Low CY; Hanapiah FA
    Biomimetics (Basel); 2021 Sep; 6(3):. PubMed ID: 34562877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A spherical parallel three degrees-of-freedom robot for ankle-foot neuro-rehabilitation.
    Malosio M; Negri SP; Pedrocchi N; Vicentini F; Caimmi M; Molinari Tosatti L
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3356-9. PubMed ID: 23366645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU.
    Zhao X; Dou L; Su Z; Liu N
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29547515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, Optimization, and Modeling of a Hydraulic Soft Robot for Chronic Total Occlusions.
    Meng LW; Xie XL; Zhou XH; Liu SQ; Hou ZG
    Biomimetics (Basel); 2024 Mar; 9(3):. PubMed ID: 38534848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection/control concurrent optimization of BLDC motors for industrial robots.
    Padilla-García EA; Cervantes-Culebro H; Rodriguez-Angeles A; Cruz-Villar CA
    PLoS One; 2023; 18(8):e0289717. PubMed ID: 37585384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid position and orientation tracking for a passive rehabilitation table-top robot.
    Wojewoda KK; Culmer PR; Gallagher JF; Jackson AE; Levesley MC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():702-707. PubMed ID: 28813902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model based control of a rehabilitation robot for lower extremities.
    Xie XL; Hou ZG; Li PF; Ji C; Zhang F; Tan M; Wang H; Hu G
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2263-6. PubMed ID: 21097222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of biomechanical modeling in design of robotic arm for rehabilitation of stroke patients.
    Huang H; Jiping H
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2718-21. PubMed ID: 17270838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trajectory planning of a robot for lower limb rehabilitation.
    Pei Y; Kim Y; Obinata G; Hase K; Stefanov D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1259-63. PubMed ID: 22254545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability and validity of the Kinect V2 for the assessment of lower extremity rehabilitation exercises.
    Wochatz M; Tilgner N; Mueller S; Rabe S; Eichler S; John M; Völler H; Mayer F
    Gait Posture; 2019 May; 70():330-335. PubMed ID: 30947108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hierarchical approach for rigid-body dynamics model simplification of a high-speed parallel robot by considering kinematics performance.
    Ni J; Mei J; Hu W
    Sci Prog; 2021 Oct; 104(4):368504211063072. PubMed ID: 34903104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tool guidance using a compact robotic assistant.
    Nelson CA; Zhang X; Buettner S; Oleynikov D
    J Robot Surg; 2009 Oct; 3(3):171. PubMed ID: 27638374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Workspace Analysis of a Differential Motion Rotary Style Breast Interventional Robot.
    Zhang Y; Sun L; Liang D; Du H
    Appl Bionics Biomech; 2020; 2020():8852228. PubMed ID: 33488767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.