These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27800014)

  • 1. Dry-grind processing using amylase corn and superior yeast to reduce the exogenous enzyme requirements in bioethanol production.
    Kumar D; Singh V
    Biotechnol Biofuels; 2016; 9():228. PubMed ID: 27800014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.
    Görgens JF; Bressler DC; van Rensburg E
    Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing ethanol yield through fiber conversion in corn dry grind process.
    Kurambhatti CV; Kumar D; Rausch KD; Tumbleson ME; Singh V
    Bioresour Technol; 2018 Dec; 270():742-745. PubMed ID: 30279100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase.
    Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A
    Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Germ soak water as nutrient source to improve fermentation of corn grits from modified corn dry grind process.
    Juneja A; Kumar D; Singh V
    Bioresour Bioprocess; 2017; 4(1):38. PubMed ID: 28890864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing glucoamylase usage for commercial-scale ethanol production from starch using glucoamylase expressing Saccharomyces cerevisiae.
    Wang X; Liao B; Li Z; Liu G; Diao L; Qian F; Yang J; Jiang Y; Zhao S; Li Y; Yang S
    Bioresour Bioprocess; 2021 Feb; 8(1):20. PubMed ID: 38650183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from
    Xu QS; Yan YS; Feng JX
    Biotechnol Biofuels; 2016; 9():216. PubMed ID: 27777618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of co-products of enzyme-assisted aqueous extraction of soybeans on ethanol production in dry-grind corn fermentation.
    Sekhon JK; Jung S; Wang T; Rosentrater KA; Johnson LA
    Bioresour Technol; 2015 Sep; 192():451-60. PubMed ID: 26080102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase.
    Shigechi H; Koh J; Fujita Y; Matsumoto T; Bito Y; Ueda M; Satoh E; Fukuda H; Kondo A
    Appl Environ Microbiol; 2004 Aug; 70(8):5037-40. PubMed ID: 15294847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct bioethanol production by amylolytic yeast Candida albicans.
    Aruna A; Nagavalli M; Girijashankar V; Ponamgi SP; Swathisree V; Rao LV
    Lett Appl Microbiol; 2015 Mar; 60(3):229-36. PubMed ID: 25348627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conventional process for ethanol production from Indian broken rice and pearl millet.
    Gohel V; Duan G
    Bioprocess Biosyst Eng; 2012 Oct; 35(8):1297-308. PubMed ID: 22407108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentation of "Quick Fiber" produced from a modified corn-milling process into ethanol and recovery of corn fiber.
    Dien BS; Nagle N; Hicks KB; Singh V; Moreau RA; Tucker MP; Nichols NN; Johnston DB; Cotta MA; Nguyen Q; Bothast RJ
    Appl Biochem Biotechnol; 2004; 113-116():937-49. PubMed ID: 15054243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consolidated bioprocessing of starchy substrates into ethanol by industrial Saccharomyces cerevisiae strains secreting fungal amylases.
    Favaro L; Viktor MJ; Rose SH; Viljoen-Bloom M; van Zyl WH; Basaglia M; Cagnin L; Casella S
    Biotechnol Bioeng; 2015 Sep; 112(9):1751-60. PubMed ID: 25786804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of exogenous α-amylases, glucoamylases, and proteases on ruminal in vitro dry matter and starch digestibility, gas production, and volatile fatty acids of mature dent corn grain.
    Amaro FX; Kim D; Agarussi MCN; Silva VP; Fernandes T; Arriola KG; Jiang Y; Cervantes AP; Adesogan AT; Ferraretto LF; Yu S; Li W; Vyas D
    Transl Anim Sci; 2021 Jan; 5(1):txaa222. PubMed ID: 34142013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Element concentrations of dry-grind corn-processing streams.
    Belyea RL; Clevenger TE; Singh V; Tumbleson ME; Rausch KD
    Appl Biochem Biotechnol; 2006 Aug; 134(2):113-28. PubMed ID: 16943633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The future of coproducts from corn processing.
    Rausch KD; Belyea RL
    Appl Biochem Biotechnol; 2006 Jan; 128(1):47-86. PubMed ID: 16415480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raw starch fermentation to ethanol by an industrial distiller's yeast strain of Saccharomyces cerevisiae expressing glucoamylase and α-amylase genes.
    Kim HR; Im YK; Ko HM; Chin JE; Kim IC; Lee HB; Bai S
    Biotechnol Lett; 2011 Aug; 33(8):1643-8. PubMed ID: 21479627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation of corn starch to ethanol with genetically engineered yeast.
    Inlow D; McRae J; Ben-Bassat A
    Biotechnol Bioeng; 1988 Jul; 32(2):227-34. PubMed ID: 18584739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of industrial
    Cripwell RA; Rose SH; Favaro L; van Zyl WH
    Biotechnol Biofuels; 2019; 12():201. PubMed ID: 31452682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement in fermentation characteristics of degermed ground corn by lipid supplementation.
    Murthy GS; Singh V; Johnston DB; Rausch KD; Tumbleson ME
    J Ind Microbiol Biotechnol; 2006 Aug; 33(8):655-60. PubMed ID: 16550435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.