BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27800558)

  • 1. High-Throughput Excipient Discovery Enables Oral Delivery of Poorly Soluble Pharmaceuticals.
    Ting JM; Tale S; Purchel AA; Jones SD; Widanapathirana L; Tolstyka ZP; Guo L; Guillaudeu SJ; Bates FS; Reineke TM
    ACS Cent Sci; 2016 Oct; 2(10):748-755. PubMed ID: 27800558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolution and Solubility Enhancement of the Highly Lipophilic Drug Phenytoin via Interaction with Poly(N-isopropylacrylamide-co-vinylpyrrolidone) Excipients.
    Widanapathirana L; Tale S; Reineke TM
    Mol Pharm; 2015 Jul; 12(7):2537-43. PubMed ID: 26046484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution-state polymer assemblies influence BCS class II drug dissolution and supersaturation maintenance.
    Dalsin MC; Tale S; Reineke TM
    Biomacromolecules; 2014 Feb; 15(2):500-11. PubMed ID: 24328187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deconstructing HPMCAS: Excipient Design to Tailor Polymer-Drug Interactions for Oral Drug Delivery.
    Ting JM; Navale TS; Jones SD; Bates FS; Reineke TM
    ACS Biomater Sci Eng; 2015 Oct; 1(10):978-990. PubMed ID: 33429529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diblock Terpolymers Are Tunable and pH Responsive Vehicles To Increase Hydrophobic Drug Solubility for Oral Administration.
    Tale S; Purchel AA; Dalsin MC; Reineke TM
    Mol Pharm; 2017 Nov; 14(11):4121-4127. PubMed ID: 28937226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical Excipient Properties for the Dissolution Enhancement of Phenytoin.
    Johnson LM; Hillmyer MA
    ACS Omega; 2019 Nov; 4(21):19116-19127. PubMed ID: 31763534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(vinylpyridine-
    Liu YS; Della Rocca J; Schenck L; Koynov A; Sifri RJ; Winston MS; Frank DS
    Mol Pharm; 2024 Mar; 21(3):1182-1191. PubMed ID: 38323546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation into the Solid-State Properties and Dissolution Profile of Spray-Dried Ternary Amorphous Solid Dispersions: A Rational Step toward the Design and Development of a Multicomponent Amorphous System.
    Baghel S; Cathcart H; O'Reilly NJ
    Mol Pharm; 2018 Sep; 15(9):3796-3812. PubMed ID: 30020788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregated Solution Morphology of Poly(acrylic acid)-Poly(styrene) Block Copolymers Improves Drug Supersaturation Maintenance and Caco-2 Cell Membrane Permeation.
    Purchel AA; Boyle WS; Reineke TM
    Mol Pharm; 2019 Nov; 16(11):4423-4435. PubMed ID: 31633362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of excipient, solvent and packaging to optimize the performance of spray-dried formulations: case example fenofibrate.
    Hugo M; Kunath K; Dressman J
    Drug Dev Ind Pharm; 2013 Feb; 39(2):402-12. PubMed ID: 22591213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated PET-RAFT Polymerization Towards Pharmaceutical Amorphous Solid Dispersion Development.
    Upadhya R; Punia A; Kanagala MJ; Liu L; Lamm M; Rhodes TA; Gormley AJ
    ACS Appl Polym Mater; 2021 Mar; 3(3):1525-1536. PubMed ID: 34368765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Polymer Design for Enhancing Oral Drug Solubility and Delivery.
    Ting JM; Porter WW; Mecca JM; Bates FS; Reineke TM
    Bioconjug Chem; 2018 Apr; 29(4):939-952. PubMed ID: 29319295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput kinetic turbidity analysis for determination of amorphous solubility and excipient screening for amorphous solid dispersions.
    Fan Y; Castleberry S
    Int J Pharm; 2023 Jan; 631():122495. PubMed ID: 36526147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxypropyl methylcellulose acetate succinate as an exceptional polymer for amorphous solid dispersion formulations: A review from bench to clinic.
    Butreddy A
    Eur J Pharm Biopharm; 2022 Aug; 177():289-307. PubMed ID: 35872180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Polymer Excipients in the Kinetic Stabilization of Drug-Rich Nanoparticles.
    Van Zee NJ; Hillmyer MA; Lodge TP
    ACS Appl Bio Mater; 2020 Oct; 3(10):7243-7254. PubMed ID: 35019383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale Computational Modeling of the Nanostructure of Solid Dispersions of Hydroxypropyl Methylcellulose Acetate Succinate (HPMCAS) and Phenytoin.
    Huang W; Mandal T; Larson RG
    Mol Pharm; 2017 Oct; 14(10):3422-3435. PubMed ID: 28829134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidating the effect of crystallization on drug release from amorphous solid dispersions in soluble and insoluble carriers.
    Ojo AT; Ma C; Lee PI
    Int J Pharm; 2020 Dec; 591():120005. PubMed ID: 33132149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Performance of Blended Polymer Excipients in Delivering a Hydrophobic Drug through the Synergistic Action of Micelles and HPMCAS.
    Li Z; Johnson LM; Ricarte RG; Yao LJ; Hillmyer MA; Bates FS; Lodge TP
    Langmuir; 2017 Mar; 33(11):2837-2848. PubMed ID: 28282137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogenated phospholipid, a promising excipient in amorphous solid dispersions of fenofibrate for oral delivery: Preparation and in-vitro biopharmaceutical characterization.
    Czajkowski M; Jacobsen AC; Bauer-Brandl A; Brandl M; Skupin-Mrugalska P
    Int J Pharm; 2023 Sep; 644():123294. PubMed ID: 37544387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amorphous solid dispersion of nisoldipine by solvent evaporation technique: preparation, characterization, in vitro, in vivo evaluation, and scale up feasibility study.
    Chavan RB; Lodagekar A; Yadav B; Shastri NR
    Drug Deliv Transl Res; 2020 Aug; 10(4):903-918. PubMed ID: 32378174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.