These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 27800571)
21. Lysozyme oxidation by singlet molecular oxygen: Peptide characterization using [ Marques EF; Medeiros MHG; Di Mascio P J Mass Spectrom; 2017 Nov; 52(11):739-751. PubMed ID: 28801970 [TBL] [Abstract][Full Text] [Related]
22. Facile method of quantification for oxidized tryptophan degradants of monoclonal antibody by mixed mode ultra performance liquid chromatography. Wong C; Strachan-Mills C; Burman S J Chromatogr A; 2012 Dec; 1270():153-61. PubMed ID: 23182937 [TBL] [Abstract][Full Text] [Related]
23. Insight into heme protein redox potential control and functional aspects of six-coordinate ligand-sensing heme proteins from studies of synthetic heme peptides. Cowley AB; Kennedy ML; Silchenko S; Lukat-Rodgers GS; Rodgers KR; Benson DR Inorg Chem; 2006 Dec; 45(25):9985-10001. PubMed ID: 17140194 [TBL] [Abstract][Full Text] [Related]
24. Analysis of monoclonal antibody oxidation by simple mixed mode chromatography. Pavon JA; Li X; Chico S; Kishnani U; Soundararajan S; Cheung J; Li H; Richardson D; Shameem M; Yang X J Chromatogr A; 2016 Jan; 1431():154-165. PubMed ID: 26774436 [TBL] [Abstract][Full Text] [Related]
25. Visible Light Induces Site-Specific Oxidative Heavy Chain Fragmentation of a Monoclonal Antibody (IgG1) Mediated by an Iron(III)-Containing Histidine Buffer. Zhang Y; Schöneich C Mol Pharm; 2023 Jan; 20(1):650-662. PubMed ID: 36538763 [TBL] [Abstract][Full Text] [Related]
26. Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products. Gracanin M; Hawkins CL; Pattison DI; Davies MJ Free Radic Biol Med; 2009 Jul; 47(1):92-102. PubMed ID: 19375501 [TBL] [Abstract][Full Text] [Related]
27. Characterization of oxidation products from 1-palmitoyl-2-linoleoyl-sn-glycerophosphatidylcholine in aqueous solutions and their reactions with cysteine, histidine and lysine residues. Milic I; Fedorova M; Teuber K; Schiller J; Hoffmann R Chem Phys Lipids; 2012 Feb; 165(2):186-96. PubMed ID: 22222463 [TBL] [Abstract][Full Text] [Related]
28. Chemiluminescence associated with singlet oxygen reactions with amino acids, peptides and proteins. Alarcón E; Henríquez C; Aspée A; Lissi EA Photochem Photobiol; 2007; 83(3):475-80. PubMed ID: 17034271 [TBL] [Abstract][Full Text] [Related]
29. Intramolecular quenching of tryptophan phosphorescence in short peptides and proteins. Gonnelli M; Strambini GB Photochem Photobiol; 2005; 81(3):614-22. PubMed ID: 15689181 [TBL] [Abstract][Full Text] [Related]
30. Quantitative evaluation of tryptophan oxidation in actin and troponin I from skeletal muscles using a rat model of acute oxidative stress. Fedorova M; Todorovsky T; Kuleva N; Hoffmann R Proteomics; 2010 Jul; 10(14):2692-700. PubMed ID: 20455213 [TBL] [Abstract][Full Text] [Related]
31. Histidine residue mediates radical-induced hinge cleavage of human IgG1. Yates Z; Gunasekaran K; Zhou H; Hu Z; Liu Z; Ketchem RR; Yan B J Biol Chem; 2010 Jun; 285(24):18662-71. PubMed ID: 20304919 [TBL] [Abstract][Full Text] [Related]
32. Riboflavin photodegradation and photosensitizing effects are highly dependent on oxygen and ascorbate concentrations. de La Rochette A; Silva E; Birlouez-Aragon I; Mancini M; Edwards AM; Morlière P Photochem Photobiol; 2000 Dec; 72(6):815-20. PubMed ID: 11140271 [TBL] [Abstract][Full Text] [Related]
33. A novel LC-MS application to investigate oxidation of peptides isolated from β-lactoglobulin. Koivumäki T; Gürbüz G; Poutanen M; Heinonen M J Agric Food Chem; 2012 Jul; 60(27):6799-805. PubMed ID: 22591547 [TBL] [Abstract][Full Text] [Related]
34. Light-induced conversion of Trp to Gly and Gly hydroperoxide in IgG1. Haywood J; Mozziconacci O; Allegre KM; Kerwin BA; Schöneich C Mol Pharm; 2013 Mar; 10(3):1146-50. PubMed ID: 23363477 [TBL] [Abstract][Full Text] [Related]
35. Selective Tryptophan Oxidation of Monoclonal Antibodies: Oxidative Stress and Modeling Prediction. Pavon JA; Xiao L; Li X; Zhao J; Aldredge D; Dank E; Fridman A; Liu YH Anal Chem; 2019 Feb; 91(3):2192-2200. PubMed ID: 30608647 [TBL] [Abstract][Full Text] [Related]
36. Middle-down fragmentation for the identification and quantitation of site-specific methionine oxidation in an IgG1 molecule. Pipes GD; Campbell P; Bondarenko PV; Kerwin BA; Treuheit MJ; Gadgil HS J Pharm Sci; 2010 Nov; 99(11):4469-76. PubMed ID: 20845446 [TBL] [Abstract][Full Text] [Related]
37. Effects of the position of internal histidine residues on the collision-induced fragmentation of triply protonated tryptic peptides. Willard BB; Kinter M J Am Soc Mass Spectrom; 2001 Dec; 12(12):1262-71. PubMed ID: 11766753 [TBL] [Abstract][Full Text] [Related]
38. Sensitizer-mediated photooxidation of histidine residues: evidence for the formation of reactive side-chain peroxides. Agon VV; Bubb WA; Wright A; Hawkins CL; Davies MJ Free Radic Biol Med; 2006 Feb; 40(4):698-710. PubMed ID: 16458201 [TBL] [Abstract][Full Text] [Related]
39. Conformational studies of a monoclonal antibody, IgG1, by chemical oxidation: structural analysis by ultrahigh-pressure LC-electrospray ionization time-of-flight MS and multivariate data analysis. Zamani L; Andersson FO; Edebrink P; Yang Y; Jacobsson SP Anal Biochem; 2008 Sep; 380(2):155-63. PubMed ID: 18577369 [TBL] [Abstract][Full Text] [Related]