BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27800617)

  • 1. Contribution of constitutive characteristics of lipids and phenolics in roots of tree species in Myrtales to aluminum tolerance.
    Maejima E; Osaki M; Wagatsuma T; Watanabe T
    Physiol Plant; 2017 May; 160(1):11-20. PubMed ID: 27800617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proportion of phospholipids in the plasma membrane is an important factor in Al tolerance.
    Maejima E; Watanabe T
    Plant Signal Behav; 2014; 9(7):e29277. PubMed ID: 25763499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of organic acids in aluminum accumulation and plant growth in Melastoma malabathricum.
    Watanabe T; Osaki M
    Tree Physiol; 2002 Aug; 22(11):785-92. PubMed ID: 12184982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Al-Fe interactions and growth enhancement in Melastoma malabathricum and Miscanthus sinensis dominating acid sulphate soils.
    Watanabe T; Jansen S; Osaki M
    Plant Cell Environ; 2006 Dec; 29(12):2124-32. PubMed ID: 17081246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of root mucilage from Melastoma malabathricum, with emphasis on its roles in aluminum accumulation.
    Watanabe T; Misawa S; Hiradate S; Osaki M
    New Phytol; 2008; 178(3):581-9. PubMed ID: 18373518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of exudation of organic acids and phosphate in aluminum tolerance of four tropical woody species.
    Nguyen NT; Nakabayashi K; Thompson J; Fujita K
    Tree Physiol; 2003 Oct; 23(15):1041-50. PubMed ID: 12975128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constitutive and aluminium-induced patterns of phenolic compounds in two maize varieties differing in aluminium tolerance.
    Tolrà R; Barceló J; Poschenrieder C
    J Inorg Biochem; 2009 Nov; 103(11):1486-90. PubMed ID: 19740545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of eucalypt species to aluminum: the possible involvement of low molecular weight organic acids in the Al tolerance mechanism.
    Silva IR; Novais RF; Jham GN; Barros NF; Gebrim FO; Nunes FN; Neves JC; Leite FP
    Tree Physiol; 2004 Nov; 24(11):1267-77. PubMed ID: 15339736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aluminum tolerance of two wheat cultivars (Brevor and Atlas66) in relation to their rhizosphere pH and organic acids exuded from roots.
    Wang P; Bi S; Ma L; Han W
    J Agric Food Chem; 2006 Dec; 54(26):10033-9. PubMed ID: 17177538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system.
    Liao H; Wan H; Shaff J; Wang X; Yan X; Kochian LV
    Plant Physiol; 2006 Jun; 141(2):674-84. PubMed ID: 16648222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The beneficial effect of aluminium and the role of citrate in Al accumulation in Melastoma malabathricum.
    Watanabe T; Jansen S; Osaki M
    New Phytol; 2005 Mar; 165(3):773-80. PubMed ID: 15720688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conostegia xalapensis (Melastomataceae): an aluminum accumulator plant.
    González-Santana IH; Márquez-Guzmán J; Cram-Heydrich S; Cruz-Ortega R
    Physiol Plant; 2012 Feb; 144(2):134-45. PubMed ID: 21973178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Organic acid secretion and its detoxification mechanism in plant roots under aluminum stress].
    You JF; Yang ZM
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Apr; 31(2):111-8. PubMed ID: 15840928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between boron and aluminum and their effects on phenolic metabolism of Linum usitatissimum L. roots.
    Heidarabadi MD; Ghanati F; Fujiwara T
    Plant Physiol Biochem; 2011 Dec; 49(12):1377-83. PubMed ID: 22078374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.).
    Kidd PS; Llugany M; Poschenrieder C; Gunsé B; Barceló J
    J Exp Bot; 2001 Jun; 52(359):1339-52. PubMed ID: 11432953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root iTRAQ protein profile analysis of two Citrus species differing in aluminum-tolerance in response to long-term aluminum-toxicity.
    Jiang HX; Yang LT; Qi YP; Lu YB; Huang ZR; Chen LS
    BMC Genomics; 2015 Nov; 16():949. PubMed ID: 26573913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize.
    Piñeros MA; Magalhaes JV; Carvalho Alves VM; Kochian LV
    Plant Physiol; 2002 Jul; 129(3):1194-206. PubMed ID: 12114573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of organic acids and boron induced tolerance of aluminum toxicity: A review.
    Riaz M; Yan L; Wu X; Hussain S; Aziz O; Jiang C
    Ecotoxicol Environ Saf; 2018 Dec; 165():25-35. PubMed ID: 30173023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method for initially selecting Al-tolerant rice varieties based on the charge characteristics of their roots.
    Lu HL; Dong G; Hua H; Zhao WR; Li JY; Xu RK
    Ecotoxicol Environ Saf; 2020 Jan; 187():109813. PubMed ID: 31644989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and genetic analyses of aluminium tolerance in rice, focusing on root growth during germination.
    Kikui S; Sasaki T; Maekawa M; Miyao A; Hirochika H; Matsumoto H; Yamamoto Y
    J Inorg Biochem; 2005 Sep; 99(9):1837-44. PubMed ID: 16095709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.